• Chinese Optics Letters
  • Vol. 22, Issue 10, 103001 (2024)
Li Ma1,2, Qixin Liu1,2, Haiyang Song1,2, Jianfang Sun1,3, and Zhen Xu1,2,3,*
Author Affiliations
  • 1Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Wangzhijiang Innovation Center for Laser, Aerospace Laser Technology and System Department, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.3788/COL202422.103001 Cite this Article Set citation alerts
    Li Ma, Qixin Liu, Haiyang Song, Jianfang Sun, Zhen Xu, "Multiple wavelength frequency stabilization with a single transfer cavity for mercury optical lattice clock," Chin. Opt. Lett. 22, 103001 (2024) Copy Citation Text show less
    References

    [1] A. D. Ludlow, M. M. Boyd, J. Ye et al. Optical atomic clocks. Rev. Mod. Phys., 87, 637(2015).

    [2] K. Yan, B. Wei, Y. L. Yin et al. A new route for laser cooling and trapping of cold molecules: intensity-gradient cooling of MgF molecules using localized hollow beams. New. J. Phys., 22, 033003(2020).

    [3] J. J. Burau, P. Aggarwal, K. Mehling et al. Blue-detuned magneto-optical trap of molecules. Phys. Rev. Lett., 130, 193401(2023).

    [4] A. Sargsyan, A. Tonoyan, R. Mirzoyan et al. Saturated-absorption spectroscopy revisited: atomic transitions in strong magnetic fields (>20 mT) with a micrometer-thin cell. Opt. Lett., 39, 2270(2014).

    [5] J. Yang, L. Liu, J. Mongkolkiattichai et al. Site-resolved imaging of ultracold fermions in a triangular-lattice quantum gas microscope. PRX Quantum, 2, 020344(2021).

    [6] C. L. Degen, F. Reinhard, P. Cappellaro. Quantum sensing. Rev. Mod. Phys., 89, 035002(2017).

    [7] Y. Y. Jiang, A. D. Ludlow, N. D. Lemke et al. Making optical atomic clocks more stable with 10−16-level laser stabilization. Nat. Photonics, 5, 158(2011).

    [8] D. S. Lyu, W. Ren, Y. Sun et al. Characterization of laser cooling in microgravity via long-term operations in TianGong-2 space lab. Natl. Sci. Rev., 10, nwac180(2023).

    [9] T. W. Hänsch, I. S. Shahin, A. L. Schawlow. High-resolution saturation spectroscopy of the sodium D lines with a pulsed tunable dye laser. Phys. Rev. Lett., 27, 707(1971).

    [10] K. Yoshii, H. Sakagami, H. Yamamoto et al. High-resolution spectroscopy and laser frequency stabilization using a narrow-linewidth planar-waveguide external cavity diode laser at 1063 nm. Opt. Lett., 45, 129(2019).

    [11] S. K. Lee, B. W. Han, D. Cho. Automatic system to relock a laser frequency to a Fabry–Perot cavity. Rev. Sci. Instrum., 76, 026101(2005).

    [12] Z.-X. Yu, Q.-X. Liu, J.-F. Sun et al. Enhanced production of 199Hg cold atoms based on two-dimensional magneto-optical trap. Acta Phys. Sin., 73, 013701(2024).

    [13] E. Oelker, R. B. Hutson, C. J. Kennedy et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photonics, 13, 714(2019).

    [14] M. Saffman, T. G. Walker, K. Molmer. Quantum information with Rydberg atoms. Rev. Mod. Phys., 82, 2313(2010).

    [15] Y. Zhang, Z. Zeng, Q. Liang et al. Doppler cooling of buffer-gas-cooled barium monofluoride molecules. Phys. Rev. A, 105, 033307(2022).

    [16] S. Utreja, H. Rathore, M. Das et al. Frequency stabilization of multiple lasers to a reference atomic transition of Rb. Sci. Rep., 12, 20624(2022).

    [17] G. Milani, B. Rauf, P. Barbieri et al. Multiple wavelength stabilization on a single optical cavity using the offset sideband locking technique. Opt. Lett., 42, 1970(2017).

    [18] A. Nevsky, S. Alighanbari, Q. F. Chen et al. Robust frequency stabilization of multiple spectroscopy lasers with large and tunable offset frequencies. Opt. Lett., 38, 4903(2013).

    [19] D. Y. Wang, W. H. Bu, D. Z. Xie et al. Compact frequency-stabilization scheme for laser cooling of polar molecules. J. Opt. Soc. Am. B, 35, 1658(2018).

    [20] Y. Zeng, K.-P. Wang, Y.-Y. Liu et al. Stabilizing dual laser with a tunable high-finesse transfer cavity for single-atom Rydberg excitation. J. Opt. Soc. Am. B, 35, 454(2018).

    [21] X. Fu, S. Fang, R. Zhao et al. Ultra-stable cavity system with low drift rate for mercury optical lattice clock. Chin. J. Lasers, 45, 0901001(2018).

    [22] Y. Zhang, Q. Liu, X. Fu et al. A stable deep-ultraviolet laser for laser cooling of mercury atoms. Opt. Laser Technol., 139, 106956(2021).

    [23] R. Zhao, X. Fu, L. Zhang et al. High-power continuous-wave narrow-linewidth 253.7 nm deep-ultraviolet laser. Appl. Opt., 56, 8973(2017).

    [24] Q. Liu, J. Sun, Y. Zhang et al. 725 nm watt-level injection-locked continuous-wave Ti:sapphire laser for a mercury optical lattice clock. Appl. Opt., 60, 10750(2021).

    [25] S. Yin, H. Liu, J. Qian et al. Observation and optimization of DAVLL spectra on the 1S0–3P1 transition of neutral mercury atom. Opt. Commun., 285, 5169(2012).

    [26] H. Liu, S. Yin, J. Qian et al. Optimization of Doppler-free magnetically induced dichroic locking spectroscopy on the 1S0–3P1 transition of a neutral mercury atom. J. Phys. B, 46, 085005(2013).

    [27] S. Subhankar, A. Restelli, Y. Wang et al. Microcontroller based scanning transfer cavity lock for long-term laser frequency stabilization. Rev. Sci. Instrum., 90, 043115(2019).

    [28] R. W. P. Drever, J. L. Hall, F. V. Kowalski et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B, 31, 97(1983).

    [29] J. I. Thorpe, K. Numata, J. Livas. Laser frequency stabilization and control through offset sideband locking to optical cavities. Opt. Express, 16, 15980(2008).

    Li Ma, Qixin Liu, Haiyang Song, Jianfang Sun, Zhen Xu, "Multiple wavelength frequency stabilization with a single transfer cavity for mercury optical lattice clock," Chin. Opt. Lett. 22, 103001 (2024)
    Download Citation