• Semiconductor Optoelectronics
  • Vol. 43, Issue 5, 968 (2022)
LI Jie1,2,3, QI Bo1,2,3, and ZHANG Jianlin2,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2022022301 Cite this Article
    LI Jie, QI Bo, ZHANG Jianlin. A Testing-Time-Augmentation Algorithm for Single Human Pose Estimation Based on Aleatoric Uncertainty[J]. Semiconductor Optoelectronics, 2022, 43(5): 968 Copy Citation Text show less
    References

    [1] Chen Y, Tian Y, He M. Monocular human pose estimation: A survey of deep learning-based methods[J]. Computer Vision and Image Understanding, 2020, 192: 102897.

    [2] Newell A, Yang K, Deng J. Stacked hourglass networks for human pose estimation[C]// Proc. of European Conf. on Computer Vision (ECCV), 2016: 483-499.

    [3] Xiao B, Wu H, Wei Y. Simple baselines for human pose estimation and tracking[C]// Proc. of European Conf. on Computer Vision (ECCV), 2018: 466-481.

    [4] Sun K, Xiao B, Liu D, et al. Deep high-resolution representation learning for human pose estimation[C]// Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2019: 5693-5703.

    [5] Yu C, Xiao B, Gao C, et al. Lite-HRNet: A lightweight high-resolution network[C]// Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2021: 10440-10450.

    [6] Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]// Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2018: 4510-4520.

    [7] Ma N, Zhang X, Zheng H T, et al. ShuffleNet V2: Practical guidelines for efficient CNN architecture design[C]// Proc. of the European Conf. on Computer Vision (ECCV), 2018: 116-131.

    [8] Li J, Wang Z, Qi B, et al. Meme: A mutually enhanced modeling method for efficient and effective human pose estimation[J]. Sensors, 2022, 22(2): 632.

    [9] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]// Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2016: 770-778.

    [10] Shorten C, Khoshgoftaar T M. A survey on image data augmentation for deep learning[J]. J. of Big Data, 2019, 6(1): 1-48.

    [11] Cubuk E D, Zoph B, Mane D, et al. AutoAugment: Learning augmentation strategies from data[C]// Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2019: 113-123.

    [12] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Adv. in Neural Information Processing Systems, 2012, 25(2): 84-90.

    [13] HüLlermeier E, Waegeman W. Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods[J]. Machine Learning, 2021, 110(3): 457-506.

    [14] Wang G, Li W, Aertsen M, et al. Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks[J]. Neurocomputing, 2019, 338: 34-45.