[1] Chen Y, Tian Y, He M. Monocular human pose estimation: A survey of deep learning-based methods[J]. Computer Vision and Image Understanding, 2020, 192: 102897.
[2] Newell A, Yang K, Deng J. Stacked hourglass networks for human pose estimation[C]// Proc. of European Conf. on Computer Vision (ECCV), 2016: 483-499.
[3] Xiao B, Wu H, Wei Y. Simple baselines for human pose estimation and tracking[C]// Proc. of European Conf. on Computer Vision (ECCV), 2018: 466-481.
[4] Sun K, Xiao B, Liu D, et al. Deep high-resolution representation learning for human pose estimation[C]// Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2019: 5693-5703.
[5] Yu C, Xiao B, Gao C, et al. Lite-HRNet: A lightweight high-resolution network[C]// Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2021: 10440-10450.
[6] Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]// Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[7] Ma N, Zhang X, Zheng H T, et al. ShuffleNet V2: Practical guidelines for efficient CNN architecture design[C]// Proc. of the European Conf. on Computer Vision (ECCV), 2018: 116-131.
[8] Li J, Wang Z, Qi B, et al. Meme: A mutually enhanced modeling method for efficient and effective human pose estimation[J]. Sensors, 2022, 22(2): 632.
[9] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]// Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2016: 770-778.
[10] Shorten C, Khoshgoftaar T M. A survey on image data augmentation for deep learning[J]. J. of Big Data, 2019, 6(1): 1-48.
[11] Cubuk E D, Zoph B, Mane D, et al. AutoAugment: Learning augmentation strategies from data[C]// Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2019: 113-123.
[12] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Adv. in Neural Information Processing Systems, 2012, 25(2): 84-90.
[13] HüLlermeier E, Waegeman W. Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods[J]. Machine Learning, 2021, 110(3): 457-506.
[14] Wang G, Li W, Aertsen M, et al. Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks[J]. Neurocomputing, 2019, 338: 34-45.