• Matter and Radiation at Extremes
  • Vol. 1, Issue 5, 269 (2016)
Qiang He1、2、3, Xi Liu1、2、*, Baosheng Li4, Liwei Deng5, Wei Liu4, and Liping Wang6
Author Affiliations
  • 1Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education of China, Beijing 100871, China
  • 2School of Earth and Space Sciences, Peking University, Beijing 100871, China
  • 3Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
  • 4Mineral Physics Institute, Stony Brook University, Stony Brook, NY 11794-2100, USA
  • 5Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
  • 6High Pressure Science and Engineering Center and Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, USA
  • show less
    DOI: 10.1016/j.mre.2016.07.003 Cite this Article
    Qiang He, Xi Liu, Baosheng Li, Liwei Deng, Wei Liu, Liping Wang. Thermal equation of state of a natural kyanite up to 8.55 GPa and 1273 K[J]. Matter and Radiation at Extremes, 2016, 1(5): 269 Copy Citation Text show less
    References

    [1] H.M. Lang, Quantitative interpretation of within-outcrop variation in metamorphic assemblage in staurolite-kyanite-grade metapelites, Baltimore, Maryland, Can. Mineral. 29 (1991) 655-671.

    [2] R.M. Kuyumjian, Kyanite-staurolite ortho-amphibolite from the Chapada region, Goi as, central Brazil, Mineral. Mag. 62 (1998) 501-507.

    [3] M. Vrabec, M. Jan ak, N. Froitzheim, J.C.M. De Hoog, Phase relations during peak metamorphism and decompression of the UHP kyanite eclogites, Pohorje Mountains (Eastern Alps, Slovenia), Lithos 144e145 (2012) 40-55.

    [4] T. Irifune, A.E. Ringwood, W.O. Hibberson, Subduction of continental crust and terrigenous and pelagic sediments: an experimental study, Earth Planet. Sci. Lett. 126 (1994) 351-368.

    [5] S. Ono, Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions: implications for water transport in subduction zones, J. Geophys. Res. 103 (1998) 18253-18267.

    [6] J.R. Goldsmith, The melting and breakdown reactions of anorthite at high pressures and temperatures, Am. Mineral. 65 (1980) 272-284.

    [7] L. Gautron, S. Kesson, W. Hibberson, Phase relations for CaAl2S2O8 (anorthite composition) in the system CaO-Al2O3-SiO2 at 14 GPa, Phys. Earth Planet. Inter. 97 (1996) 71-81.

    [8] X. Liu, H. Ohfuji, N. Nishiyama, Q. He, T. Sanehira, et al., High-P behavior of anorthite composition and some phase relations of the CaOAl2O3- SiO2 system to the lower mantle of the Earth, and their geophysical implications, J. Geophys. Res. 117 (2012) B09205.

    [9] N. Kinomura, S. Kume, M. Koizumi, Synthesis of K2SiSi3O9 with silicon in 4- and 6-coordination, Mineral. Mag. 40 (1975) 401-404.

    [10] S. Urakawa, T. Kondo, N. Igawa, O. Shimomura, H. Ohno, Synchrotron radiation study on the high-pressure and high-temperature phase relations of KAlSi3O8, Phys. Chem. Miner. 21 (1994) 387-391.

    [11] L. Chang, Z. Chen, X. Liu, H. Wang, Expansivity and compressibility of wadeite-type K2Si4O9 determined by in situ high T/P experiments, and their implication, Phys. Chem. Miner. 40 (2013) 29-40.

    [12] B.J. Skinner, S.P. Clark, D.E. Appleman, Molar volumes and thermal expansions of andalusite, kyanite, and sillimanite, Am. J. Sci. 259 (1961) 651-668.

    [13] J.K. Winter, S. Ghose, Thermal expansion and high-temperature crystal chemistry of the Al2SiO5 polymorphs, Am. Mineral. 64 (1979) 573-586.

    [14] G.D. Gatta, F. Nestola, J.M. Walter, On the thermo-elastic behaviour of kyanite: a neutron powder diffraction study up to 1200 C, Mineral. Mag. 70 (2006) 309-317.

    [15] X. Liu, Q. He, H. Wang, M.E. Fleet, X. Hu, Thermal expansion of kyanite at ambient pressure: An X-ray powder diffraction study up to 1000 C, Geosci. Front. 1 (2010) 91-97.

    [16] T. Irifune, K. Kuroda, T. Minagawa, Experimental study of the decomposition of kyanite at high pressure and high temperature, in: T. Yukutake (Ed.), The Earth's Central Part: Its Structure and Dynamics, Terra Scientific Publishing Company, Tokyo, 1995, pp. 35-44.

    [17] M. Matsui, Molecular dynamics study of the structures and bulk moduli of crystals in the system CaO-MgO-Al2O3-SiO2, Phys. Chem. Miner. 23 (1996) 345-353.

    [18] P. Comodi, P.F. Zanazzi, S. Poli, M.W. Schmidt, High-pressure behavior of kyanite: Compressibility and structural deformations, Am. Mineral. 82 (1997) 452-459.

    [19] H. Yang, R.T. Downs, L.W. Finger, Compressibility and crystal structure of kyanite, Al2SiO5, at high pressure, Am. Mineral. 82 (1997) 467-474.

    [20] A.R. Oganov, J.P. Brodholt, High-pressure phases in the Al2SiO5 system and the problem of aluminous phase in the Earth's lower mantle: ab initio calculations, Phys. Chem. Miner. 27 (2000) 430-439.

    [21] B. Winkler, M. Hytha, M. Warren, V. Milman, J. Gale, J. Schreuer, Calculation of the elastic constants of the Al2SiO5 polymorphs andalusite, sillimanite and kyanite, Z. Krist. 216 (2001) 67-70.

    [22] A. Friedrich, M. Kunz, B. Winkler, T. Le Bihan, High-pressure behavior of sillimanite and kyanite: Compressibility, decomposition and indications of a new high-pressure phase, Z. Krist. 219 (2004) 324-329.

    [23] X. Liu, S.R. Shieh, M.E. Fleet, L. Zhang, Compressibility of a natural kyanite to 17.5 GPa, Prog. Nat. Sci. 19 (2009) 1281-1286.

    [24] B. Li, J. Kung, R.C. Liebermann, Modern techniques in measuring elasticity of Earth materials at high pressure and high temperature using ultrasonic interferometry in conjunction with synchrotron X-radiation in multi-anvil apparatus, Phys. Earth Planet. Inter. 143e144 (2004) 559-574.

    [25] D.L. Decker, High-pressure equation of state for NaCl, KCl, and CsCl, J. Appl. Phys. 42 (1971) 3239-3244.

    [26] Y.B. Wang, D.J. Weidner, Y. Meng, Advances in equation-of-state measurements in SAM-85, in: M.H. Manghnani, T. Yagi (Eds.), Properties of Earth and Planetary Materials at High Pressure and Temperature, American Geophysical Union, Washington D. C., 1998, pp. 365-372.

    [27] X. Hu, X. Liu, Q. He, H. Wang, S. Qin, et al., Thermal expansion of andalusite and sillimanite at ambient pressure: A powder X-ray diffraction study up to 1000 C, Mineral. Mag. 75 (2011) 363-374.

    [28] A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Report LAUR, 2004.

    [29] B.H. Toby, EXPGUI, a graphical user interface for GSAS, J. Appl. Crystallogr. 34 (2001) 210-213.

    [30] A. Le Bail, Whole powder pattern decomposition methods and applications: A retrospection, Powder Diffr. 20 (2005) 316-326.

    [31] M.W. Schmidt, S. Poli, P. Comodi, P.F. Zanazzi, High-pressure behavior of kyanite: Decomposition of kyanite into stishovite and corundum, Am. Mineral. 82 (1997) 460-466.

    [32] Y. Nishihara, K. Nakayama, E. Takahashi, T. Iguchi, K. Funakoshi, P-V-T equation of state of stishovite to the mantle transition zone conditions, Phys. Chem. Miner. 31 (2005) 660-670.

    [33] M. Akaogi, M. Oohata, H. Kojitani, H. Kawaji, Thermodynamic properties of stishovite by low-temperature heat capacity measurements and the coesite-stishovite transition boundary, Am. Mineral. 96 (2011) 1325-1330.

    [34] W. Yong, E. Dachs, A. Benisek, Heat capacity, entropy and phase equilibria of stishovite, Phys. Chem. Miner. 39 (2011) 153-162.

    [35] N. Funamori, T. Yagi, T. Uchida, Deviatoric stress measurement under uniaxial compression by a powder X-ray diffraction method, J. Appl. Phys. 75 (1994) 4327-4331.

    [36] L. Liu, Disproportionation of kyanite to corundum plus stishovite at high pressure and temperature, Earth Planet. Sci. Lett. 24 (1974) 224-228.

    [37] S. Ono, High temperature stability limit of phase egg, AlSiO3(OH), Contrib. Mineral. Petrol. 137 (1999) 83-89.

    [38] X. Liu, N. Nishiyama, T. Sanehira, T. Inoue, Y. Higo, et al., Decomposition of kyanite and solubility of Al2O3 in stishovite at high pressure and high temperature conditions, Phys. Chem. Miner. 33 (2006) 711-721.

    [39] S. Ono, Y. Nakajima, K. Funakoshi, In situ observation of the decomposition of kyanite at high pressures and high temperatures, Am. Mineral. 92 (2007) 1624-1629.

    [40] R.A. Robie, B.S. Hemingway, Thermodynamic properties of minerals and related substances at 298.15 and 1 Bar (105 Pascals) pressure and at higher temperatures, U.S. Geol. Surv. Bull. 2131 (1995).

    [41] M. Akaogi, N. Kamii, A. Kishi, H. Kojitani, Calorimetric study on highpressure transitions in KAlSi3O8, Phys. Chem. Miner. 31 (2004) 85-91.

    [42] M. Akaogi, H. Yusa, K. Shiraishi, T. Suzuki, Thermodynamic properites of a-quartz, coesite, and stishovite and equilibrium phase relations at high pressures and high temperatures, J. Geophys. Res. 100 (1995) 22337-22347.

    [43] H. Kojitani, Y. Wakabayashi, Y. Tejima, C. Kato, M. Haraguchi, et al., High-pressure phase relations in Ca2AlSiO5.5 and energetics of perovskite-related compounds with oxygen defects in the Ca2Si2O6eCa2Al2O5 join, Phys. Earth Planet. Inter. 173 (2009) 349-353.

    [44] L.S. Dubrovinsky, S.K. Saxena, P. Lazor, High-pressure and hightemperature in situ X-ray diffraction study of iron and corundum to 68 GPa using an internally heated diamond anvil cell, Phys. Chem. Miner. 25 (1998) 434-441.

    [45] Y. Fei, C.M. Bertka, Phase transitions in the Earth's mantle and mantle mineralogy, in: Y. Fei, C.M. Bertka, B.O. Mysen (Eds.), Mantle Petrology: Field Observations and High Pressure Experimentation: a Tribute to Francis R. (Joe) Boyd, The Geochemical Society, Houston, 1999, pp. 189-207.

    [46] T.J.B. Holland, R. Powell, An imporved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids, J. Metamorph. Geol. 29 (2011) 333-383.

    Qiang He, Xi Liu, Baosheng Li, Liwei Deng, Wei Liu, Liping Wang. Thermal equation of state of a natural kyanite up to 8.55 GPa and 1273 K[J]. Matter and Radiation at Extremes, 2016, 1(5): 269
    Download Citation