• Nano-Micro Letters
  • Vol. 15, Issue 1, 223 (2023)
Tao Yang1, Yan-Hui Chen1, Ya-Chao Wang1, Wei Ou1..., Lei-Ying Ying1, Yang Mei1,*, Ai-Qin Tian2, Jian-Ping Liu2,**, Hao-Chung Guo3,4 and Bao-Ping Zhang1,***|Show fewer author(s)
Author Affiliations
  • 1Laboratory of Micro/Nano-Optoelectronics, School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005 Fujian, People’s Republic of China
  • 2Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 Jiangsu, People’s Republic of China
  • 3Department of Photonics, National Yang Ming Chiao Tung University, Hsinchu, 30010 Taiwan, People’s Republic of China
  • 4Semiconductor Research Center, Honhai Research Institute, New Taipei, 220236 Taiwan, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01189-0 Cite this Article
    Tao Yang, Yan-Hui Chen, Ya-Chao Wang, Wei Ou, Lei-Ying Ying, Yang Mei, Ai-Qin Tian, Jian-Ping Liu, Hao-Chung Guo, Bao-Ping Zhang. Green Vertical-Cavity Surface-Emitting Lasers Based on InGaN Quantum Dots and Short Cavity[J]. Nano-Micro Letters, 2023, 15(1): 223 Copy Citation Text show less
    References

    [1] K. Iga, Vertical-cavity surface-emitting laser: Its conception and evolution. Jpn. J. Appl. Phys. 47(1), 1–10 (2008).

    [2] F. Koyama, Recent advances of vcsel photonics. J. Lightwave Technol. 24(12), 4502–4513 (2006).

    [3] D.L. Huffaker, D.G. Deppe, K. Kumar, T.J. Rogers, Native-oxide defined ring contact for low-threshold vertical-cavity lasers. Appl. Phys. Lett. 65(1), 97–99 (1994).

    [4] D. Bimberg, N.N. Ledentsov, J.A. Lott, Quantum-dot vertical-cavity surface-emitting lasers. MRS Bull. 27(7), 531–537 (2002).

    [5] K. Iga, VCSEL: born small and grown big. Proc. SPIE 11263, 1126302 (2020).

    [6] Y. Motegi, H. Soda, K. Iga, Surface-emitting GaInAsP/InP injection-laser with short cavity length. Electron. Lett. 18(11), 461–463 (1982).

    [7] G.M. Yang, M.H. Macdougal, P.D. Dapkus, Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation. Electron. Lett. 31(11), 886–888 (1995).

    [8] T. Numai, T. Kawakami, T. Yoshikawa, M. Sugimoto, Y. Sugimoto et al., Record low-threshold current in microcavity surface-emitting laser. Jpn. J. Appl. Phys. 32(10B), L1533–L1534 (1993).

    [9] J.L. Jewell, A. Scherer, S.L. McCall, Y.H. Lee, S. Walker et al., Low-threshold electrically pumped vertical-cavity surface-emitting microlasers. Electron. Lett. 25(17), 1123–1124 (1989).

    [10] H.C. Yu, Z.W. Zheng, Y. Mei, R.B. Xu, J.P. Liu et al., Progress and prospects of GaN-based VCSEL from near UV to green emission. Prog. Quantum Electron. 57, 1–19 (2018).

    [11] T.C. Lu, S.W. Chen, T.T. Wu, P.M. Tu, C.K. Chen et al., Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature. Appl. Phys. Lett. 97(7), 3 (2010).

    [12] R.T. Elafandy, J.H. Kang, C. Mi, T.K. Kim, J.S. Kwak et al., Study and application of birefringent nanoporous GaN in the polarization control of blue vertical-cavity surface-emitting lasers. ACS Photonics 8(4), 1041–1047 (2021).

    [13] G. Cosendey, A. Castiglia, G. Rossbach, J.F. Carlin, N. Grandjean, Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate. Appl. Phys. Lett. 101(15), 4 (2012).

    [14] R.T. ElAfandy, J.H. Kang, B. Li, T.K. Kim, J.S. Kwak et al., Room-temperature operation of c-plane GaN vertical cavity surface emitting laser on conductive nanoporous distributed bragg reflector. Appl. Phys. Lett. 117(1), 011101 (2020).

    [15] T.-C. Chang, S.-Y. Kuo, J.-T. Lian, K.-B. Hong, S.-C. Wang et al., High-temperature operation of GaN-based vertical-cavity surface-emitting lasers. Appl. Phys. Express 10(11), 112101 (2017).

    [16] M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka et al., Enhancement of slope efficiency and output power in GaN -based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide. Appl. Phys. Lett. 112(11), 111104 (2018).

    [17] J.T. Leonard, D.A. Cohen, B.P. Yonkee, R.M. Farrell, T. Margalith et al., Nonpolar III-Nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture. Appl. Phys. Lett. 107(1), 011102 (2015).

    [18] Y. Higuchi, K. Omae, H. Matsumura, T. Mukai, Room-temperature CW lasing of a gan-based vertical-cavity surface-emitting laser by current injection. Appl. Phys. Express 1(12), 3 (2008).

    [19] T. Hamaguchi, H. Nakajima, M. Tanaka, M. Ito, M. Ohara et al., Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror. Appl. Phys. Express 12(4), 044004 (2019).

    [20] T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka et al., Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature. IEEE J. Quantum Electron. 48(9), 1107–1112 (2012).

    [21] M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka et al., Watt-class blue vertical-cavity surface-emitting laser arrays. Appl. Phys. Express 12(9), 091004 (2019).

    [22] D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata et al., Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature. Appl. Phys. Express 4(7), 3 (2011).

    [23] G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying et al., Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers. Opt. Express 24(14), 15546–15553 (2016).

    [24] Y. Mei, G.E. Weng, B.P. Zhang, J.P. Liu, W. Hofmann et al., Quantum dot vertical-cavity surface-emitting lasers covering the “green gap.” Light-Sci. Appl. 6(1), e16199 (2017).

    [25] R. Xu, Y. Mei, H. Xu, L.Y. Ying, Z. Zheng et al., Green vertical-cavity surface-emitting lasers based on combination of blue-emitting quantum wells and cavity-enhanced recombination. IEEE Trans. Electron. Dev. 65(10), 4401–4406 (2018).

    [26] T. Hamaguchi, Y. Hoshina, K. Hayashi, M. Tanaka, M. Ito et al., Room-temperature continuous-wave operation of green vertical-cavity surface-emitting lasers with a curved mirror fabricated on (20–21) semi-polar GaN. Appl. Phys. Express 13(4), 5 (2020).

    [27] K. Terao, H. Nagai, D. Morita, S. Masui, T. Yanamoto et al., Blue and green GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN DBR. Proc. SPIE 11686, 116860E (2021).

    [28] Y. Mei, R.B. Xu, L.Y. Ying, J.P. Liu, Z.W. Zheng et al., Room temperature continuous wave lasing of GaN-based green vertical-cavity surface-emitting lasers. Proc. SPIE 10918, 109181 (2019).

    [29] H. Xu, Y. Mei, R.B. Xu, L.Y. Ying, X.L. Su et al., Green VCSELs based on nitride semiconductors. Jpn. J. Appl. Phys. 59, SO0803-SO816 (2020).

    [30] C.A. Forman, S. Lee, E.C. Young, J.A. Kearns, D.A. Cohen et al., Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact. Appl. Phys. Lett. 112(11), 5 (2018).

    [31] S. Yamamoto, Y.J. Zhao, C.C. Pan, R.B. Chung, K. Fujito et al., High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar (20–21) GaN substrates. Appl. Phys. Express 3(12), 3 (2010).

    [32] S. Schulz, E.P. O’Reilly, Theory of reduced built-in polarization field in nitride-based quantum dots. Phys. Rev. B 82(3), 033411 (2010).

    [33] Y. Arakawa, Progress in GaN-based quantum dots for optoelectronics applications. IEEE J. Sel. Top. Quantum Electron. 8(4), 823–832 (2002).

    [34] N.N. Ledentsov, D. Bimberg, Z.I. Alferov, Progress in epitaxial growth and performance of quantum dot and quantum wire lasers. J. Lightwave Technol. 26(9–12), 1540–1555 (2008).

    [35] R.C. Tao, Y. Arakawa, Impact of quantum dots on III-Nitride lasers: a theoretical calculation of threshold current densities. Jpn. J. Appl. Phys. 58, SCCC31 (2019).

    [36] C. Adelmann, J. Simon, G. Feuillet, N.T. Pelekanos, B. Daudin et al., Self-assembled InGaN quantum dots grown by molecular-beam epitaxy. Appl. Phys. Lett. 76(12), 1570–1572 (2000).

    [37] S.M. Lee, D.G. Cahill, Heat transport in thin dielectric films. J. Appl. Phys. 81(6), 2590–2595 (1997).

    [38] Y. Mei, R.B. Xu, H. Xu, L.Y. Ying, Z.W. Zheng et al., A comparative study of thermal characteristics of GaN-based VCSELs with three different typical structures. Semicond. Sci. Technol. 33(1), 10 (2018).

    [39] Y.H. Chen, Y. Mei, H. Xu, R.B. Xu, L.Y. Ying et al., Improvement of thermal dissipation of GaN-based micro cavity light-emitting devices. IEEE Photonics Technol. Lett. 33(1), 19–22 (2021).

    [40] J.A. Kearns, J. Back, D.A. Cohen, S.P. Denbaars, S. Nakamura, Demonstration of blue semipolar (20–2—1) GaN-based vertical-cavity surface-emitting lasers. Opt. Express 27(17), 23707–23713 (2019).

    [41] O. Mokhtari, A review: formation of voids in solder joint during the transient liquid phase bonding process-causes and solutions. Microelectron. Reliab. 98, 95–105 (2019).

    [42] R. Xu, Y. Mei, H. Xu, T. Yang, L. Ying et al., Effects of lateral optical confinement in GaN VCSELs with double dielectric DBRs. IEEE Photonics J. 12(2), 1–8 (2020).

    [43] Z.C. Li, J.P. Liu, M.X. Feng, K. Zhou, S.M. Zhang et al., Effects of matrix layer composition on the structural and optical properties of self-organized InGaN quantum dots. J. Appl. Phys. 114(9), 093105 (2013).

    [44] Y.H. Cho, G.H. Gainer, A.J. Fischer, J.J. Song, S. Keller et al., “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells. Appl. Phys. Lett. 73(10), 1370–1372 (1998).

    [45] P. Li, H. Li, Z. Li, J. Kang, X. Yi et al., Strong carrier localization effect in carrier dynamics of 585 nm InGaN amber light-emitting diodes. J. Appl. Phys. 117(7), 073101 (2015).

    [46] X. Hou, T. Yang, S.S. Fan, H. Xu, D. Iida et al., Improvement of optical properties of InGaN-based red multiple quantum wells. Opt. Express 31(11), 18567–18575 (2023).

    [47] S. SaeidNahaei, J.D. Ha, J.S. Kim, J.S. Kim, G.H. Kim et al., Radiative emission mechanism analysis of green InGaN/GaN light-emitting diodes with the Si-doped graded short-period superlattice. J. Lumines 253, 119440 (2023).

    [48] G.E. Weng, W.R. Zhao, S.Q. Chen, H. Akiyama, Z.C. Li et al., Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green. Nanoscale Res. Lett. 10, 31 (2015).

    [49] M. Zhang, A. Banerjee, C.S. Lee, J.M. Hinckley, P. Bhattacharya, A InGaN/GaN quantum dot green (λ=524 nm) laser. Appl. Phys. Lett. 98(22), 3 (2011).

    [50] H.C. Casey, M.B. Panish, Heterostructure Lasers, 1st edn. (Academic Press, New York, 1978), pp.110–186

    [51] T. Frost, A. Banerjee, K. Sun, S.L. Chuang, P. Bhattacharya, InGaN/GaN quantum dot red (λ=630 nm) laser. IEEE J. Quantum Electron. 49(11), 923–931 (2013).

    [52] A. Fiore, M. Rossetti, B. Alloing, C. Paranthoen, J.X. Chen et al., Carrier diffusion in low-dimensional semiconductors: A comparison of quantum wells, disordered quantum wells, and quantum dots. Phys. Rev. B 70(20), 12 (2004).

    [53] Y.R. Wu, Y.Y. Lin, H.H. Huang, J. Singh, Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting. J. Appl. Phys. 105(1), 7 (2009).

    [54] M. Zhang, P. Bhattacharya, W. Guo, InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop. Appl. Phys. Lett. 97(1), 3 (2010).

    [55] C.X. Xia, S.Y. Wei, Built-in electric field effect in wurtzite InGaN/GaN coupled quantum dots. Phys. Lett. A 346(1–3), 227–231 (2005).

    [56] J.Z. Wu, H. Long, X.L. Shi, L.Y. Ying, Z.W. Zheng et al., Reduction of lasing threshold of GaN-based vertical-cavity surface-emitting lasers by using short cavity lengths. IEEE Trans. Electron Devices 65(6), 2504–2508 (2018).

    [57] H. Yokoyama, S.D. Brorson, Rate equation analysis of microcavity lasers. J. Appl. Phys. 66(10), 4801–4805 (1989).

    [58] W.J. Liu, X.L. Hu, L.Y. Ying, S.Q. Chen, J.Y. Zhang et al., On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers. Sci. Rep. 5, 9600 (2015).

    [59] L. Tien-Chang, W. Tzeng-Tsong, C. Shih-Wei, T. Po-Min, L. Zhen-Yu et al., Characteristics of current-injected GaN-based vertical-cavity surface-emitting lasers. IEEE J. Sel. Top. Quantum Electron. 17(6), 1594–1602 (2011).

    [60] T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani et al., Room temperature lasing at blue wavelengths in gallium nitride microcavities. Science 285(5435), 1905–1906 (1999).

    [61] T. Tawara, H. Gotoh, T. Akasaka, N. Kobayashi, T. Saitoh, Low-threshold lasing of InGaN vertical-cavity surface-emitting lasers with dielectric distributed Bragg reflectors. Appl. Phys. Lett. 83(5), 830–832 (2003).

    [62] S. Kako, T. Someya, Y. Arakawa, Observation of enhanced spontaneous emission coupling factor in nitride-based vertical-cavity surface-emitting laser. Appl. Phys. Lett. 80(5), 722–724 (2002).

    [63] Y. Yamamoto, S. Machida, G. Björk, Micro-cavity semiconductor lasers with controlled spontaneous emission. Opt. Quantum Electron. 24(2), S215–S243 (1992).

    [64] H.D. Zhao, X.G. Zhu, N. Li, T.C. Gao, Spontaneous emission coupling factors in planar micro-cavity lasers with distributed Bragg reflectors. Opt. Quantum Electron. 35(13), 1165–1173 (2003).

    [65] G. Chen, A comparative-study on the thermal-characteristics of vertical-cavity surface-emitting lasers. J. Appl. Phys. 77(9), 4251–4258 (1995).

    [66] M. Osinski, W. Nakwaski, Thermal-analysis of closely-packed 2-dimensional etched-well surface-emitting laser arrays. IEEE J. Sel. Top. Quantum Electron. 1(2), 681–696 (1995).

    [67] A.F. Charles, L. SeungGeun, C.Y. Erin, A.K. Jared, A.C. Daniel et al., Continuous-wave operation of nonpolar GaN-based vertical-cavity surface-emitting lasers. Proc. SPIE 10532, 105321C (2018).

    Tao Yang, Yan-Hui Chen, Ya-Chao Wang, Wei Ou, Lei-Ying Ying, Yang Mei, Ai-Qin Tian, Jian-Ping Liu, Hao-Chung Guo, Bao-Ping Zhang. Green Vertical-Cavity Surface-Emitting Lasers Based on InGaN Quantum Dots and Short Cavity[J]. Nano-Micro Letters, 2023, 15(1): 223
    Download Citation