[1] Braunstein S L, van Loock P. Quantum information with continuous variables[J]. Reviews of Modern Physics, 77, 513-577(2005).
[2] Wehner S, Elkouss D. 362(6412): eaam9288[J]. Hanson R. Quantum internet: a vision for the road ahead. Science(2018).
[3] Flowers J. The route to atomic and quantum standards[J]. Science, 306, 1324-1330(2004).
[4] Endres M, Bernien H, Keesling A et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays[J]. Science, 354, 1024-1027(2016). http://www.ncbi.nlm.nih.gov/pubmed/27811284
[5] Aasil J. Abbott1 B P, Abbott1 R, et al. Advanced LIGO[J]. Classical and Quantum Gravity, 32, 074001(2015).
[6] Mauranyapin N P, Madsen L S, Taylor M A et al. Evanescent single-molecule biosensing with quantum-limited precision[J]. Nature Photonics, 11, 477-481(2017).
[7] Li H, Feng J X, Wan Z J et al. Low noise continuous-wave single frequency 780nm laser high efficiently generated by extra-cavity-enhanced frequency doubling[J]. Chinese Journal of Lasers, 41, 0502003(2014).
[8] Vainio M, Halonen L. Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy[J]. Physical Chemistry Chemical Physics, 18, 4266-4294(2016). http://www.ncbi.nlm.nih.gov/pubmed/26804321
[9] Zhang Q, Guo Y B, Chen J K et al. A communication experiment using mode division multiplexing with phase modulation-coherent detection[J]. Chinese Journal of Lasers, 47, 0306001(2020).
[10] Xu J J, Bu L B, Liu J Q et al. Airborne high-spectral-resolution lidar for atmospheric aerosol detection[J]. Chinese Journal of Lasers, 47, 0710003(2020).
[11] Zhang Z L, Gao L, Sun Y Y et al. Strain transfer law of distributed optical fiber sensor[J]. Chinese Journal of Lasers, 46, 0410001(2019).
[12] Su X, Zhao Y, Hao S et al. Experimental preparation of eight-partite cluster state for photonic qumodes[J]. Optics Letters, 37, 5178-5180(2012).
[13] Su X L, Tian C X, Deng X W et al. Quantum entanglement swapping between two multipartite entangled states[J]. Physical Review Letters, 117, 240503(2016). http://www.ncbi.nlm.nih.gov/pubmed/28009187
[14] Su X L, Hao S H, Deng X W et al. Gate sequence for continuous variable one-way quantum computation[J]. Nature Communications, 4, 2828(2013). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868230/
[15] Barredo D, de Léséleuc S, Lienhard V et al. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays[J]. Science, 354, 1021-1023(2016). http://science.sciencemag.org/content/354/6315/1021
[16] Abbott B P, Abbott R, Abbott T D et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 116, 061102(2016).
[17] Spero R E, Whitcomb S E. The laser interferometer gravitational-wave observatory (LIGO)[J]. Optics and Photonics News, 6, 35-39(1995).
[18] Winkelmann L. Injection-locked high power oscillator for advanced gravitational wave observatories[M]. Göttingen: Cuvillier Verlag, 22-23(2012).
[19] Zayhowski J J, Mooradian A. Single-frequency microchip Nd lasers[J]. Optics Letters, 14, 24-26(1989).
[20] Lang R J, Yariv A. An exact formulation of coupled-mode theory for coupled-cavity lasers[J]. IEEE Journal of Quantum Electronics, 24, 66-72(1988).
[21] Nagai H, Kume M, Ohta I et al. Low-noise operation of a diode-pumped intracavity-doubled Nd∶YAG laser using a Brewster plate[J]. IEEE Journal of Quantum Electronics, 28, 1164-1168(1992). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=135242
[22] Kemp A J, Friel G J, Lake T K et al. Polarization effects, birefringent filtering, and single-frequency operation in lasers containing a birefringent gain crystal[J]. IEEE Journal of Quantum Electronics, 36, 228-235(2000). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=823469
[23] Zhang K S, Li R N, Xie C D et al. All-solid-state intracavity frequency doubled Nd∶YVO4 laser of single-frequency operation[J]. Chinese Journal of Lasers, 21, 617-620(1994).
[24] Hao E J, Tan H M, Li T et al. Single-frequency laser at 473nm by use of twisted-mode technique[J]. Optics Communications, 270, 327-331(2007).
[25] Martin K I, Clarkson W A, Hanna D C. 3 W of single-frequency output at 532nm by intracavity frequency doubling of a diode-bar-pumped Nd: YAG ring laser[J]. Optics Letters, 21, 875-877(1996).
[26] Winkelmann L, Puncken O, Kluzik R et al. Injection-locked single-frequency laser with an output power of 220 W[J]. Applied Physics B, 102, 529-538(2011).
[27] Drever R W P, Hall J L, Kowalski F V et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 31, 97-105(1983). http://link.springer.com/article/10.1007/BF00702605
[28] Kwee P, Bogan C, Danzmann K et al. Stabilized high-power laser system for the gravitational wave detector advanced LIGO[J]. Optics Express, 20, 10617-10634(2012).
[29] Thies F, Bode N N, Oppermann P et al. Nd∶YVO4 high-power master oscillator power amplifier laser system for second-generation gravitational wave detectors[J]. Optics Letters, 44, 719-722(2019). http://www.researchgate.net/publication/330762690_NdYVO_4_high-power_master_oscillator_power_amplifier_laser_system_for_second-generation_gravitational_wave_detectors
[30] Bode N N, Meylahn F, Willke B. Sequential high power laser amplifiers for gravitational wave detection[J]. Optics Express, 28, 29469-29478(2020). http://www.researchgate.net/publication/343890560_Sequential_high_power_laser_amplifiers_for_gravitational_wave_detection
[31] Nunez P M, Wetter N U, Zondy J J et al. A single-frequency, diode-pumped Nd: YLF laser at 657nm: a frequency and intensity noise comparison with an extended cavity diode laser[J]. Laser Physics, 23, 025801(2013). http://adsabs.harvard.edu/abs/2013LaPhy..23b5801N
[32] Koch P, Ruebel F, Bartschke J et al. 5. 7 W cw single-frequency laser at 671 nm by single-pass second harmonic generation of a 17. 2 W injection-locked 1342 nm Nd∶YVO4 ring laser using periodically poled MgO∶LiNbO3[J]. Applied Optics, 54, 9954-9959(2015).
[33] Wang L, Ye Q, Gao M W et al. Stable high-power Er: YAG ceramic single-frequency laser at 1645nm[J]. Optics Express, 24, 14967-14973(2016).
[34] Wang L, Gao C Q, Gao M W et al. Resonantly pumped monolithic nonplanar Ho: YAG ring laser with high-power single-frequency laser output at 2122nm[J]. Optics Express, 21, 9541-9546(2013).
[35] Dai T Y, Guo S X, Duan X M et al. High efficiency single - longitudinal - mode resonantly - pumped Ho∶GdTaO4 laser at 2068nm[J]. Optics Express, 27, 34204-34210(2019).
[36] Li M M, Yang F, Zhao S L et al. All solid-state intracavity sum-frequency single-longitudinal-mode 593. 5nm yellow lasers[J]. Chinese Journal of Lasers, 47, 0301003(2020).
[37] Ian M. Study of the physics of the power-scaling of end-pumped solid-state laser sources based on Nd∶YVO4[D]. Southampton: University of Southampton, 50(2003).
[38] Ma Y Y, Li Y J, Feng J X et al. Influence of energy-transfer upconversion and excited-state absorption on a high power Nd∶YVO4 laser at 1. 34μm[J]. Optics Express, 26, 12106-12120(2018).
[39] Zhuo Z, Li T, Li X M et al. Investigation of Nd∶YVO4/YVO4 composite crystal and its laser performance pumped by a fiber coupled diode laser[J]. Optics Communications, 274, 176-181(2007). http://www.sciencedirect.com/science/article/pii/S0030401807001599
[40] Li Y J, Feng J X, Li P et al. 400mW low noise continuous-wave single-frequency Er, Yb∶YAl3(BO3)4 laser at 1. 55μm[J]. Optics Express, 21, 6082-6090(2013).
[41] Liu J, Wang Z, Li H et al. Stable, 12 W, continuous-wave single-frequency Nd: YVO4 green laser polarized and dual-end pumped at 880nm[J]. Optics Express, 19, 6777-6782(2011).
[42] McDonagh L, Wallenstein R. Low-noise 62 W CW intracavity-doubled TEM00 Nd∶YVO4 green laser pumped at 888nm[J]. Optics Letters, 32, 802-804(2007). http://onlinelibrary.wiley.com/resolve/reference/PMED?id=17339942
[43] Yao A Y, Hou W, Kong Y P et al. Double-end-pumped 11-W Nd: YVO4 cw laser at 1342nm[J]. Journal of the Optical Society of America B, 22, 2129(2005).
[44] Zheng Y H, Wang Y J, Xie C D et al. Single-frequency Nd: YVO4 laser at 671nm with high-output power of 2. 8 W[J]. IEEE Journal of Quantum Electronics, 48, 67-72(2012). http://dx.doi.org/10.1109/jqe.2011.2178398
[45] Wang W Z, Lu H D, Su J et al. Broadband tunable single-frequency Nd: YVO4/LBO green laser with high output power[J]. Applied Optics, 52, 2279-2285(2013).
[46] Martin K I, Clarkson W A, Hanna D C. Self-suppression of axial mode hopping by intracavity second-harmonic generation[J]. Optics Letters, 22, 375-377(1997).
[47] Lu H D, Su J, Zheng Y H et al. Physical conditions of single-longitudinal-mode operation for high-power all-solid-state lasers[J]. Optics Letters, 39, 1117-1120(2014). http://europepmc.org/abstract/med/24690685
[48] Zheng Y H, Li F Q, Wang Y J et al. High-stability single-frequency green laser with a wedge Nd∶YVO4 as a polarizing beam splitter[J]. Optics Communications, 283, 309-312(2010). http://www.sciencedirect.com/science/article/pii/S0030401809009675
[49] Ma Y Y, Li Y J, Feng J X et al. High-power stable continuous-wave single longitudinal-mode Nd∶YVO4 laser at 1342nm[J]. Optics Express, 26, 1538-1546(2018). http://www.onacademic.com/detail/journal_1000040493575010_84bf.html
[50] Jin P X, Lu H D, Yin Q W et al. Expanding continuous tuning range of a CW single-frequency laser by combining an intracavity etalon with a nonlinear loss[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1600505(2018). http://ieeexplore.ieee.org/document/8169032/
[51] Liu Q, Liu J L, Jiao Y C et al. A stable 22-W low-noise continuous-wave single-frequency Nd∶YVO4 laser at 1. 06μm directly pumped by a laser diode[J]. Chinese Physics Letters, 29, 054205(2012).
[52] Wang Y J, Zheng Y H, Shi Z et al. High-power single-frequency Nd∶YVO4 green laser by self-compensation of astigmatisms[J]. Laser Physics Letters, 9, 506-510(2012). http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012LaPhL...9..506W&db_key=PHY&link_type=ABSTRACT&high=24701
[53] Lü B D[M]. Laser optics: beam characterization, propagation and transformation, resonator technology and physics, 392-393(2003).
[54] Wang Y J, Yang W H, Zheng Y H et al. Influence of pump wavelength and Nd
3+ doped concentration on the performance of intracavity doubling single-frequency lasers[J]. Chinese Journal of Lasers, 40, 0602005(2013).
[55] Wang Y, Yang W, Zhou H et al. Temperature dependence of the fractional thermal load of Nd∶YVO4 at 1064nm lasing and its influence on laser performance[J]. Optics Express, 21, 18068-18078(2013).
[56] Zheng Y H, Zhou H J, Wang Y J et al. Suppressing the preferential σ-polarization oscillation in a high power Nd: YVO4 laser with wedge laser crystal[J]. Chinese Physics B, 22, 084207(2013).
[57] Gao Y H, Li Y J, Feng J X et al. Low noise continuous-wave single-frequency dual-wavelength laser operating at 532nm and 1. 06μm[J]. Chinese Journal of Lasers, 46, 0401005(2019).
[58] Zhang C, Lu H, Yin Q et al. Continuous-wave single-frequency laser with dual wavelength at 1064 and 532nm[J]. Applied Optics, 53, 6371-6374(2014).
[59] Yin Q, Lu H, Peng K. Investigation of the thermal lens effect of the TGG crystal in high-power frequency-doubled laser with single frequency operation[J]. Optics Express, 23, 4981-4990(2015).
[60] Yin Q, Lu H, Su J et al. High power single-frequency and frequency-doubled laser with active compensation for the thermal lens effect of terbium gallium garnet crystal[J]. Optics Letters, 41, 2033-2036(2016).
[61] Guo Y R, Lu H D, Yin Q W et al. Intra-cavity round-trip loss measurement of all-solid-state single-frequency laser by introducing extra nonlinear loss[J]. Chinese Optics Letters, 15, 021402(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ170207000034gNjPmS
[62] Jin P, Lu H, Su J et al. Scheme for improving laser stability via feedback control of intracavity nonlinear loss[J]. Applied Optics, 55, 3478-3482(2016).
[63] Guo Y R, Lu H D, Xu M Z et al. Investigation about the influence of longitudinal-mode structure of the laser on the relative intensity noise properties[J]. Optics Express, 26, 21108-21118(2018). http://www.researchgate.net/publication/326754691_Investigation_about_the_influence_of_longitudinal-mode_structure_of_the_laser_on_the_relative_intensity_noise_properties
[64] Guo Y R, Lu H D, Su J et al. Investigation of hundred-watt all-solid-state continuous-wave single-frequency 1064nm laser[J]. Chinese Journal of Lasers, 44, 0601007(2017).
[65] Xu M Z, Guo Y R, Su J et al. 125 W single-frequency CW Nd: YVO4 laser based on two-stage dual-end-pumped master-oscillator power amplifiers[J]. Laser Physics Letters, 16, 036201(2019). http://iopscience.iop.org/article/10.1088/1612-202X/ab0102
[66] Guo Y R, Xu M Z, Peng W N et al. Realization of a 101 W single-frequency continuous wave all-solid-state 1064nm laser by means of mode self-reproduction[J]. Optics Letters, 43, 6017-6020(2018).
[67] Feng J X, Wan Z J, Li Y J et al. Generation of 8.3dB continuous variable quantum entanglement at a telecommunication wavelength of 1550nm[J]. Laser Physics Letters, 15, 015209(2018).
[68] Buchler B C, Huntington E H, Harb C C et al. Feedback control of laser intensity noise[J]. Physical Review A, 57, 1286-1294(1998). http://adsabs.harvard.edu/abs/1998PhRvA..57.1286B
[69] Bachor H A, Ralph T C. A guide to experiments in quantum optics[M]. Weinheim: Wiley, 204-205(2004).
[70] Zhang T C, Poizat J P, Grelu P et al. Quantum noise of free-running and externally-stabilized laser diodes[J]. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, 7, 601-613(1995). http://www.onacademic.com/detail/journal_1000036039897310_0258.html
[71] Lu H, Guo Y, Peng K. Intensity noise manipulation of a single-frequency laser with high output power by intracavity nonlinear loss[J]. Optics Letters, 40, 5196-5199(2015). http://www.ncbi.nlm.nih.gov/pubmed/26565833
[72] Guo Y R, Peng W N, Su J et al. Influence of the pump scheme on the output power and the intensity noise of a single-frequency continuous-wave laser[J]. Optics Express, 28, 5866-5874(2020).
[73] Guo Y, Lu H, Peng W et al. Intensity noise suppression of a high-power single-frequency CW laser by controlling the stimulated emission rate[J]. Optics Letters, 44, 6033-6036(2019).
[74] Gao Y H, Li Y J, Feng J X et al. Stable continuous-wave single-frequency intracavity frequency-doubled laser with intensity noise suppressed in audio frequency region[J]. Chinese Physics B, 28, 094204(2019).
[75] Gao Y H, Feng J X, Li Y J et al. Generation and measurement of squeezed vacuum states at audio-band frequencies[J]. Applied Sciences, 9, 1272(2019). http://www.researchgate.net/publication/332559273_Generation_and_Measurement_of_Squeezed_Vacuum_States_at_Audio-Band_Frequencies/download
[76] Wang Y J, Zheng Y H, Xie C D et al. High-power low-noise Nd: YAP/LBO laser with dual wavelength outputs[J]. IEEE Journal of Quantum Electronics, 47, 1006-1013(2011). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5898999
[77] Yang W H, Wang Y J, Li Z X et al. Compact and low-noise intracavity frequency-doubled single-frequency Nd: YAP/KTP laser[J]. Chinese Journal of Lasers, 41, 0502002(2014).
[78] Yu J, Qin Y, Yan Z H et al. Improvement of the intensity noise and frequency stabilization of Nd YAP laser with an ultra-low expansion Fabry-Perot cavity[J]. Optics Express, 27, 3247-3254(2019). http://www.researchgate.net/publication/330746148_Improvement_of_the_intensity_noise_and_frequency_stabilization_of_NdYAP_laser_with_an_ultra-low_expansion_Fabry-Perot_cavity/download
[79] Feng J X, Li Y J, Zhang K S et al[J]. Linear polarization output performance of Nd: YAG laser at 946nm considering the energy-transfer upconversion Chinese Physics B, 27, 074211.
[80] Wang Y T, Liu J L, Liu Q et al. Diode-end-pumped continuous-wave Nd: YAG laser at 946nm of single-frequency operation[J]. Laser Physics, 20, 802-805(2010). http://link.springer.com/article/10.1134/S1054660X10070315
[81] Wang Y T, Liu J L, Liu Q et al. Stable continuous-wave single-frequency Nd: YAG blue laser at 473nm considering the influence of the energy-transfer upconversion[J]. Optics Express, 18, 12044-12051(2010).
[82] Radziemski L J, Engleman R, Brault J W. Fourier-transform-spectroscopy measurements in the spectra of neutral lithium,
6I and
7I (Li I)[J]. Physics. Review A, 52, 4462-4470(1995). http://www.ncbi.nlm.nih.gov/pubmed/9912785
[83] Yang X P, Wang C X, Feng J X et al. 9 W all-solid-state continuous-wave single-frequency 1. 34μm Nd∶YVO4 laser[J]. Chinese Journal of Lasers, 40, 0602019(2013).
[84] Ma Y Y, Feng J X, Wan Z J et al. Continuous variable quantum entanglement at 1. 34μm[J]. Acta Physica Sinica, 66, 244205(2017).
[85] Li Y J, Jiao Y C, Feng J X et al. A diode-end-pumped Er
3+, Yb
3+∶YAl3(BO3)4 laser at 1. 5μm[J]. Chinese Journal of Lasers, 40, 0102007(2013).
[86] Jin P, Lu H, Wei Y et al. Single-frequency CW Ti∶sapphire laser with intensity noise manipulation and continuous frequency-tuning[J]. Optics Letters, 42, 143-146(2017). http://smartsearch.nstl.gov.cn/paper_detail.html?id=01ea5c435858c4d160a16716ecac2ed9
[87] Sun X J, Wei J, Wang W Z et al. Realization of a continuous frequency-tuning Ti: sapphire laser with an intracavity locked etalon[J]. Chinese Optics Letters, 13, 071401(2015). http://www.opticsjournal.net/Articles/Abstract?aid=OJ150707000079u1x4AC
[88] Su J, Jin P X, Wei Y X et al. Automatically and broadly tunable all-solid-state continuous single-frequency Ti: sapphire laser[J]. Chinese Journal of Lasers, 44, 0701006(2017).
[89] Lu H. D, Su J. Xie C D, et al. Experimental investigation about influences of longitudinal-mode structure of pumping source on a Ti: sapphire laser[J]. Optics Express, 19, 1344-1353(2011).
[90] Lu H. D, Su J, Wang M H, et al. Single frequency Ti: sapphire laser with continuous frequency-tuning and low intensity noise by means of the additional intracavity nonlinear loss[J]. Optics Express, 22, 24551-24558(2014).
[91] Wei Y X, Lu H D, Jin P X et al. Self-injection locked CW single-frequency tunable Ti: sapphire laser[J]. Optics Express, 25, 21379-21387(2017).
[92] Lu H D, Sun X J, Wei J et al. Intracavity frequency-doubled and single-frequency Ti: sapphire laser with optimal length of the gain medium[J]. Applied Optics, 54, 4262-4266(2015). http://www.opticsinfobase.org/abstract.cfm?uri=ao-54-13-4262
[93] Lu H D, Wei J, Wei Y X et al. Generation of high-power single-frequency 397. 5nm laser with long lifetime and perfect beam quality in an external enhancement-cavity with MgO-doped PPSLT[J]. Optics Express, 24, 23726-23734(2016).
[94] Wu L, Yan Z H, Liu Y H et al. Experimental generation of tripartite polarization entangled states of bright optical beams[J]. Applied Physics Letters, 108, 161102(2016). http://scitation.aip.org/content/aip/journal/apl/108/16/10.1063/1.4947103
[95] Zhang L P, Yin G L, Li F Q et al. All-solid-state tunable Ti: sapphire laser with high-power and single-frequency at 900nm[J]. Chinese Journal of Lasers, 44, 1201002(2017).
[96] Li F Q, Li H J, Lu H D et al. High-power tunable single-frequency 461nm generation from an intracavity doubled Ti: sapphire laser with PPKTP[J]. Laser Physics, 26, 025802(2016).
[97] Li F Q, Li H J, Lu H D et al. Realization of a tunable 455. 5nm laser with low intensity noise by intracavity frequency-doubled Ti: sapphire laser[J]. IEEE Journal of Quantum Electronics, 52, 1700106(2016). http://smartsearch.nstl.gov.cn/paper_detail.html?id=dc692b3b094939238ff2789776000669
[98] Li F Q, Zhao B, Wei J et al. Continuously tunable single-frequency 455nm blue laser for high-state excitation transition of cesium[J]. Optics Letters, 44, 3785-3788(2019). http://www.researchgate.net/publication/334656809_Continuously_tunable_single-frequency_455_nm_blue_laser_for_high-state_excitation_transition_of_cesium