• PhotoniX
  • Vol. 4, Issue 1, 33 (2023)
Liang Zhang1、*, Jilin Zhang1, Fufei Pang1、**, Tingyun Wang1, Liang Chen2, and Xiaoyi Bao2
Author Affiliations
  • 1Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
  • 2Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
  • show less
    DOI: 10.1186/s43074-023-00107-2 Cite this Article
    Liang Zhang, Jilin Zhang, Fufei Pang, Tingyun Wang, Liang Chen, Xiaoyi Bao. Transient replica symmetry breaking in Brillouin random fiber lasers[J]. PhotoniX, 2023, 4(1): 33 Copy Citation Text show less
    References

    [1] Letokhov VS. Generation of light by a scattering medium with negative resonance absorption. Soviet J Exp Theor Phys. 1968;26:835–40.

    [2] Thouless D, Anderson P, Palmer RG. Solution of a “solvable model of a spin glass.” Phil Mag. 1977;35:593–601.

    [3] Parisi G. Order parameter for spin-glasses. Phys Rev Lett. 1983;50:1946–8.

    [4] Parisi G. Infinite number of order parameters for spin-glasses. Phys Rev Lett. 1979;43:1754–6.

    [5] Parisi G. The order parameter for spin glasses: a function on the interval 0–1. J Phys A: Math Gen. 1980;13:1101–12.

    [6] Mezard M, Parisi G, Sourlas N, et al. Nature of the spin-glass phase. Phys Rev Lett. 1984;52:1156–9.

    [7] Parisi G. Replica theory and spin glasses. In: Krzakala F, editor. Statistical Physics, Optimization, Inference, and Message-Passing Algorithms: Lecture Notes of the Les Houches School of Physics: Special Issue, October 2013. Oxford: Oxford Academic; 2016. .

    [8] Uppu R, Mujumdar S. Lévy exponents as universal identifiers of threshold and criticality in random lasers. Phys Rev A. 2014;90: 025801.

    [9] Lepri S, Cavalieri S, Oppo GL, Wiersma D. Statistical regimes of random laser fluctuations. Phys Rev A. 2006;75: 063820.

    [10] Uppu R, Tiwari AK, Mujumdar S. Identification of statistical regimes and crossovers in coherent random laser emission. Opt Lett. 2012;37:662–4.

    [11] Araújo C, Gomes A, Raposo E. Lévy statistics and the glassy behavior of light in random fiber lasers. Appl Sci. 2017;7:644.

    [12] Ghofraniha N, Viola I, Maria FD, Barbarella G, Gigli G, Leuzzi L, Conti C. Experimental evidence of replica symmetry breaking in random lasers. Nat Commun. 2015;6:6058.

    [13] Leuzzi L, Conti C, Folli V, Angelani L, Ruocco G. Phase diagram and complexity of mode-locked lasers: from order to disorder. Phys Rev Lett. 2009;102: 083901.

    [14] Conti C, Leuzzi L. Complexity of waves in nonlinear disordered media. Phys Rev. 2011;83: 134204.

    [15] Antenucci F, Crisanti A, Ibáñez-Berganza M, Marruzzo A, Leuzzi L. Statistical mechanics models for multimode lasers and random lasers. Phil Mag. 2016;96:704–31.

    [16] Angelani L, Conti C, Ruocco G, Zamponi F. Glassy behavior of light. Phys Rev Lett. 2006;96(6): 065702.

    [17] Antenucci F, Crisanti A, Leuzzi L. Complex spherical 2+ 4 spin glass: A model for nonlinear optics in random media. Phys Rev A. 2015;91: 053816.

    [18] Angelani L, Conti C, Ruocco G, Zamponi F. Glassy behavior of light in random lasers. Phys Rev B. 2006;74: 104207.

    [19] Antenucci F, Conti C, Crisanti A, Leuzzi L. General phase diagram of multimodal ordered and disordered lasers in closed and open cavities. Phys Rev Lett. 2015;114: 043901.

    [20] Moura AL, Pincheira PI, Reyna AS, Raposo EP, Gomes AS, de Araújo CB. Replica symmetry breaking in the photonic ferromagnetic-like spontaneous mode-locking phase of a multimode Nd: YAG laser. Phys Rev Lett. 2017;119: 163902.

    [21] Pincheira PI, Silva AF, Fewo SI, Carreño SJ, Moura AL, Raposo EP, de Araújo CB. Observation of photonic paramagnetic to spin-glass transition in a specially designed TiO2 particle-based dye-colloidal random laser. Opt Lett. 2016;41:3459–62.

    [22] Basak S, Blanco A, López C. Large fluctuations at the lasing threshold of solid-and liquid-state dye lasers. Sci Rep. 2016;6:1–8.

    [23] Kong J, He J, Zhang J, Ma J, Xie K, Chen J, Hu Z. Replica Symmetry Breaking in Cholesteric Liquid Crystal Bandgap Lasing. Ann Phys. 2021;533:2000328.

    [24] Lima BC, Tovar P, Von Der Weid JP. Generalized extreme-value distribution of maximum intensities and Lévy-like behavior in an SOA-based random feedback laser emission. J Opt Soc Am B. 2020;37:987–92.

    [25] Lima BC, Pincheira PI, Raposo EP, Menezes LDS, de Araújo CB, Gomes AS, Kashyap R. Extreme-value statistics of intensities in a cw-pumped random fiber laser. Phys Rev A. 2017;96: 013834.

    [26] Li J, Wu H, Wang Z, Lin S, Lu C, Raposo EP, Rao Y. Lévy spectral intensity statistics in a Raman random fiber laser. Opt Lett. 2019;44:2799–802.

    [27] Tehranchi A, Kashyap R. Theoretical investigations of power fluctuations statistics in Brillouin erbium-doped fiber lasers. Opt Express. 2019;27:37508–15.

    [28] Zhou Z, Chen L, Bao X. High efficiency Brillouin random fiber laser with replica symmetry breaking enabled by random fiber grating. Opt Express. 2021;29:6532–41.

    [29] Coronel E, Das A, González IR, Gomes AS, Margulis W, Von Der Weid JP, Raposo EP. Evaluation of Pearson correlation coefficient and Parisi parameter of replica symmetry breaking in a hybrid electronically addressable random fiber laser. Opt Express. 2021;29:24422–33.

    [30] Sugavanam S, Sorokina M, Churkin DV. Spectral correlations in a random distributed feedback fiber laser. Nat Commun. 2017;8:1–8.

    [31] Pang M, Bao X, Chen L. Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser. Opt Lett. 2013;38:1866–8.

    [32] Pang M, Xie S, Bao X, Zhou DP, Lu Y, Chen L. Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber. Opt Lett. 2012;37:3129–31.

    [33] Xu Y, Xiang D, Ou Z, Lu P, Bao X. Random Fabry-Perot resonator-based sub-kHz Brillouin fiber laser to improve spectral resolution in linewidth measurement. Opt Lett. 2015;40:1920–3.

    [34] Saxena B, Ou Z, Bao X, Chen L. Low frequency-noise random fiber laser with bidirectional SBS and Rayleigh feedback. IEEE Photonics Technol Lett. 2014;27:490–3.

    [35] Tovar P, von der Weid JP. Dynamic Evolution of Narrow Spectral Modes in Stochastic Brillouin Random Fiber Lasers. IEEE Photonics Technol Lett. 2021;33:1471–4.

    [36] Mezard M, Parisi G, Virasoro MA. Spin glass theory and beyond. Phys Today. 1988;41(12):109–10. .

    [37] Sarkar A, Bhaktha BS. Replica symmetry breaking in coherent and incoherent random lasing modes. Opt Lett. 2021;46:5169–72.

    [38] Gomes AS, Raposo EP, Moura AL, Fewo SI, Pincheira PI, Jerez V, de Araújo CB. Observation of Lévy distribution and replica symmetry breaking in random lasers from a single set of measurements. Sci Rep. 2016;6:1–8.

    [39] González IR, Lima BC, Pincheira PI, Brum AA, Macêdo A, Vasconcelos GL, Kashyap R. Turbulence hierarchy in a random fiber laser. Nat Commun. 2017;8:1–8.

    [40] González I. R., Raposo E. P., Macêdo A., De S Menezes L. & Gomes A. S. Coexistence of turbulence-like and glassy behaviours in a photonic system. Sci Rep. 2018;8:1–8.

    [41] Xu J, Wu J, Ye J, Song J, Yao B, Zhang H, Rao Y. Optical rogue wave in random fiber laser. Photonics Res. 2020;8:1–7.

    [42] Kolpakov S, Sergeyev SV, Udalcovs A, Pang X, Ozolins O, Schatz R, Popov S. Optical rogue waves in coupled fiber Raman lasers. Opt Lett. 2020;45:4726–9.

    Liang Zhang, Jilin Zhang, Fufei Pang, Tingyun Wang, Liang Chen, Xiaoyi Bao. Transient replica symmetry breaking in Brillouin random fiber lasers[J]. PhotoniX, 2023, 4(1): 33
    Download Citation