• Chinese Optics Letters
  • Vol. 23, Issue 5, 051102 (2025)
Haoran Shen1,2, Puzheng Wang1,2, Ming Lu1,2, Chi Zhang1,2..., Jian Li1,2,** and Qin Wang1,2,*|Show fewer author(s)
Author Affiliations
  • 1Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
  • 2Broadband Wireless Communication and Sensor Network Technology, Key Lab of Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
  • show less
    DOI: 10.3788/COL202523.051102 Cite this Article Set citation alerts
    Haoran Shen, Puzheng Wang, Ming Lu, Chi Zhang, Jian Li, Qin Wang, "Tactile-assisted point cloud super-resolution," Chin. Opt. Lett. 23, 051102 (2025) Copy Citation Text show less
    References

    [1] H. Liu, J. Luo, P. Wu et al. People perception from rgb-d cameras for mobile robots. 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2020(2015).

    [2] F. Endres, J. Hess, J. Sturm et al. 3-D mapping with an RGB-D camera. IEEE Trans. Rob., 30, 177(2013).

    [3] L. Caltagirone, M. Bellone, L. Svensson et al. Lidar–camera fusion for road detection using fully convolutional neural networks. Rob. Auton. Syst., 111, 125(2019).

    [4] R. Qian, X. Lai, X. Li. 3D object detection for autonomous driving: A survey. Pattern Recognit., 130, 108796(2022).

    [5] F. Lafarge, C. Mallet. Creating large-scale city models from 3D-point clouds: a robust approach with hybrid representation. Int. J. Comput. Vis., 99, 69(2012).

    [6] C. R. Qi, H. Su, K. Mo et al. PointNet: deep learning on point sets for 3D classification and segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 652(2017).

    [7] C. R. Qi, L. Yi, H. Su et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space. Advances in Neural Information Processing Systems(2017).

    [8] Y. Wang, Y. Sun, Z. Liu et al. Dynamic graph cnn for learning on point clouds. ACM Trans. Graph., 38, 1(2019).

    [9] H. Su, V. Jampani, D. Sun et al. Splatnet: Sparse lattice networks for point cloud processing. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2530(2018).

    [10] Q. Hu, B. Yang, L. Xie et al. RandLA-Net: Efficient semantic segmentation of large-scale point clouds. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 11108(2020).

    [11] C. R. Qi, X. Chen, O. Litany et al. ImVoteNet: boosting 3D object detection in point clouds with image votes. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4404(2020).

    [12] Y. Zhou, O. Tuzel. VoxelNet: end-to-end learning for point cloud based 3D object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4490(2018).

    [13] N. Carion, F. Massa, G. Synnaeve et al. End-to-end object detection with transformers. European Conference on Computer Vision, 213(2020).

    [14] W. Yuan, S. Dong, E. H. Adelson. GelSight: high-resolution robot tactile sensors for estimating geometry and force. Sensors, 17, 2762(2017).

    [15] M. Lambeta, P.-W. Chou, S. Tian et al. DIGIT: a novel design for a low-cost compact high-resolution tactile sensor with application to in-hand manipulation. IEEE Rob. Autom. Lett., 5, 3838(2020).

    [16] M. Björkman, Y. Bekiroglu, V. Högman et al. Enhancing visual perception of shape through tactile glances. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 3180(2013).

    [17] G. Z. Gandler, C. H. Ek, M. Björkman et al. Object shape estimation and modeling, based on sparse Gaussian process implicit surfaces, combining visual data and tactile exploration. Rob. Auton. Syst., 126, 103433(2020).

    [18] J. Ilonen, J. Bohg, V. Kyrki. Three-dimensional object reconstruction of symmetric objects by fusing visual and tactile sensing. Int. J. Rob. Res., 33, 321(2014).

    [19] E. Smith, R. Calandra, A. Romero et al. 3D shape reconstruction from vision and touch. 34th Conference on Neural Information Processing Systems(2020).

    [20] E. Smith, D. Meger, L. Pineda et al. Active 3D shape reconstruction from vision and touch. 35th Conference on Neural Information Processing Systems(2021).

    [21] W. Yang, X. Zhang, Y. Tian et al. Deep learning for single image super-resolution: a brief review. IEEE Trans. Multimed., 21, 3106(2019).

    [22] Z. Wang, J. Chen, S. C. H. Hoi. Deep learning for image super-resolution: a survey. IEEE Trans. Pattern Anal. Mach. Intell., 43, 3365(2020).

    [23] C. Dong, C. C. Loy, K. He et al. Learning a deep convolutional network for image super-resolution. Computer Vision–ECCV 2014: 13th European Conference, 184(2014).

    [24] B. Lim, S. Son, H. Kim et al. Enhanced deep residual networks for single image super-resolution. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 136(2017).

    [25] Y. Zhang, K. Li, K. Li et al. Image super-resolution using very deep residual channel attention networks. Proceedings of the European Conference on Computer Vision (ECCV), 286(2018).

    [26] Y. Zhang, H. Wang, C. Qin et al. Aligned structured sparsity learning for efficient image super-resolution. Advances in Neural Information Processing Systems(2021).

    [27] R. Li, X. Li, C.-W. Fu et al. PU-GAN: a point cloud upsampling adversarial network. Proceedings of the IEEE/CVF International Conference on Computer Vision, 7203(2019).

    [28] G. Qian, A. Abualshour, G. Li et al. PU-GCN: point cloud upsampling using graph convolutional networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 11683(2021).

    [29] S. Qiu, S. Anwar, N. Barnes. PU-Transformer: point cloud upsampling transformer. Proceedings of the Asian Conference on Computer Vision, 2475(2022).

    [30] R. Li, X. Li, P.-A. Heng et al. Point cloud upsampling via disentangled refinement. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 344(2021).

    [31] W. Shi, J. Caballero, F. Huszar et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)(2016).

    [32] M. Alexa, J. Behr, D. Cohen-Or et al. Computing and rendering point set surfaces. IEEE Trans. Vis. Comput. Graph., 9, 3(2003).

    [33] H. Huang, D. Li, H. Zhang et al. Consolidation of unorganized point clouds for surface reconstruction. ACM Trans. Graph., 28, 1(2009).

    [34] Y. Lipman, D. Cohen-Or, D. Levin et al. Parameterization-free projection for geometry reconstruction. ACM Trans. Graph., 26, 22(2007).

    [35] Y. Li, R. Bu, M. Sun et al. PointCNN: convolution on x-transformed points. Advances in Neural Information Processing Systems(2018).

    [36] L. Yu, X. Li, C.-W. Fu et al. PU-Net: point cloud upsampling network. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2790(2018).

    [37] W. Yifan, S. Wu, H. Huang et al. Patch-based progressive 3D point set upsampling. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 5958(2019).

    [38] S. Wang, J. Wu, X. Sun et al. 3D shape perception from monocular vision, touch, and shape priors. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1606(2018).

    [39] L. Rustler, J. Lundell, J. K. Behrens et al. Active visuo-haptic object shape completion. IEEE Rob. Autom. Lett., 7, 5254(2022).

    [40] O. Ronneberger, P. Fischer, T. Brox. U-Net: convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, 234(2015).

    [41] E. Coumans, Y. Bai. Pybullet, a python module for physics simulation for games, robotics and machine learning(2016).

    [42] S. Koch, A. Matveev, Z. Jiang et al. ABC: a big CAD model dataset for geometric deep learning. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 9601(2019).

    [43] Y. He, D. Tang, Y. Zhang et al. Grad-PU: arbitrary-scale point cloud upsampling via gradient descent with learned distance functions. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 5354(2023).

    [44] X. Ma, Y. Zhou, H. Wang et al. Image as set of points. The Eleventh International Conference on Learning Representations(2023).

    Haoran Shen, Puzheng Wang, Ming Lu, Chi Zhang, Jian Li, Qin Wang, "Tactile-assisted point cloud super-resolution," Chin. Opt. Lett. 23, 051102 (2025)
    Download Citation