• Chinese Journal of Lasers
  • Vol. 48, Issue 11, 1106001 (2021)
Tong Xiang1, Heming Chen2,*, and Yuchen Hu1
Author Affiliations
  • 1College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
  • 2Bell Honors School, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
  • show less
    DOI: 10.3788/CJL202148.1106001 Cite this Article Set citation alerts
    Tong Xiang, Heming Chen, Yuchen Hu. Silicon-Based Integrated Device for Electro-Optic Modulation Assembly with Mode-Division Multiplexing[J]. Chinese Journal of Lasers, 2021, 48(11): 1106001 Copy Citation Text show less
    References

    [1] Chu T. Silicon-based optoelectronic integrated devices[J]. Optics & Optoelectronic Technology, 17, 5-9(2019).

    [2] Liu X, Chen H M, Hu Y C et al. An integrated device for photonic-crystal electro-optic modulation and coarse wavelength-division multiplexing[J]. Chinese Journal of Lasers, 48, 0306002(2021).

    [3] Huang Y J, Wang Y, Zhang L F et al. Tunable electro-optical modulator based on a photonic crystal fiber selectively filled with liquid crystal[J]. Journal of Lightwave Technology, 37, 1903-1908(2019). http://ieeexplore.ieee.org/document/8624309/references

    [4] Li M X, Ling J W, He Y et al. LiNbO3 photonic crystal optical modulator[C]. //Conference on Lasers and Electro-Optics, May 10-15, 2020, Washington, DC, United States, STu4J, 3(2020).

    [5] Abdelatty M Y, Badr M M, Swillam M A et al. Compact silicon electro-optical modulator using hybrid ITO tri-coupled waveguides[J]. Journal of Lightwave Technology, 36, 4198-4204(2018). http://ieeexplore.ieee.org/document/8425710/references

    [6] Ghosh R R, Bhardwaj P, Dhawan A et al. Numerical modeling of integrated electro-optic modulators based on mode-gap shifting in photonic crystal slab waveguides containing a phase change material[J]. Journal of the Optical Society of America B, 37, 2287-2298(2020).

    [7] Terada Y, Tatebe T, Hinakura Y et al. Si photonic crystal slow-light modulators with periodic p-n junctions[J]. Journal of Lightwave Technology, 35, 1684-1692(2017). http://d.wanfangdata.com.cn/periodical/a74797e5c89556ce9d566a4bc76a7712

    [8] Ooka Y, Tetsumoto T, Fushimi A et al. CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform[J]. Scientific Reports, 5, 11312(2015). http://www.nature.com/articles/srep11312

    [9] Ooka Y, Tetsumoto T, Daud N A B et al. Ultrasmall in-plane photonic crystal demultiplexers fabricated with photolithography[J]. Optics Express, 25, 1521-1528(2017). http://europepmc.org/abstract/MED/28158033

    [10] Song B S, Noda S, Asano T et al. Photonic devices based on in-plane hetero photonic crystals[J]. Science, 300, 1537(2003).

    [11] Daud N A B, Ooka Y, Tabata T et al. Electro-optic modulator based on photolithography fabricated p-i-n integrated photonic crystal nanocavity[J]. IEICE Transactions on Electronics, E100.C, 670-674(2017).

    [12] Le Y S, Wang Z, Li Z Y et al. Three-mode all-optical (de)multiplexing on a SOI chip[J]. Optics Communications, 406, 173-176(2018). http://www.sciencedirect.com/science/article/pii/S0030401817303395

    [13] Saitoh K, Hanzawa N, Sakamoto T et al. PLC-based mode multi/demultiplexers for mode division multiplexing[J]. Optical Fiber Technology, 35, 80-92(2017). http://www.sciencedirect.com/science/article/pii/S1068520016300633

    [14] Fu P D, Chen H M. Design of three-mode multi/demultiplexer based on 2-D photonic crystals for mode-division multiplexing transmission[J]. Journal of Physics: Conference Series, 844, 012011(2017). http://adsabs.harvard.edu/abs/2017JPhCS.844a2011F

    [15] Huang Q D, Wu Y F, Jin W et al. Mode multiplexer with cascaded vertical asymmetric waveguide directional couplers[J]. Journal of Lightwave Technology, 36, 2903-2911(2018). http://www.researchgate.net/publication/321952660_Six-Mode_Multiplexer_with_Cascaded_Vertical_Asymmetric_Waveguide_Directional_Couplers

    [16] Fu P D, Chen H M. Design and performance analysis of three-mode division multi/demultiplexer based on two-dimensional photonic crystals[J]. Laser & Optoelectronics Progress, 54, 020602(2017).

    [17] Chen J Y, Shi Y C. Polarization-insensitive silicon waveguide crossing based on multimode interference couplers[J]. Optics Letters, 43, 5961-5964(2018). http://www.researchgate.net/publication/329425562_Polarization-insensitive_silicon_waveguide_crossing_based_on_multimode_interference_couplers

    [18] Xu L H, Wang Y, Mao D et al. Ultra-broadband and compact two-mode multiplexer based on subwavelength-grating-slot-assisted adiabatic coupler for the silicon-on-insulator platform[J]. Journal of Lightwave Technology, 37, 5790-5800(2019). http://ieeexplore.ieee.org/document/8823000

    [19] Chen X, Meng W, Lou C B et al. Structure of adiabatic coupled supersymmetric waveguides[J]. Acta Optica Sinica, 39, 0223001(2019).

    [20] Chen W, Wang P, Yang T et al. Silicon three-mode (de)multiplexer based on cascaded asymmetric Y junctions[J]. Optics Letters, 41, 2851-2854(2016).

    [21] Qiu H Y, Yu H, Hu T et al. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers[J]. Optics Express, 21, 17904-17911(2013).

    [22] Rodriguez D G, Corral J L, Griol A et al. Dimensional variation tolerant mode converter/multiplexer fabricated in SOI technology for two-mode transmission at 1550 nm[J]. Optics Letters, 42, 1221-1224(2017). http://europepmc.org/abstract/MED/28362734

    [23] Minz M, Mishra D, Sonkar R K et al. Design of a hybrid mode and polarization division multiplexer[C]. //Asia Communications and Photonics Conference, November 2-5, 2019, Chengdu, China, M4A, 282(2019).

    [24] Mehrabi K, Zarifkar A, Babaei M et al. Compact, high-performance, and fabrication friendly two-mode division multiplexer based on a silicon bent directional coupler[J]. Applied Optics, 59, 3645-3651(2020). http://www.researchgate.net/publication/339927445_Compact_high-performance_and_fabrication_friendly_two-mode_division_multiplexer_based_on_a_silicon_bent_directional_coupler

    [25] Mehrabi K, Zarifkar A. Ultracompact and broadband asymmetric directional-coupler-based mode division (de)multiplexer[J]. Journal of the Optical Society of America B, 36, 1907-1913(2019). http://www.researchgate.net/publication/333881107_Ultracompact_and_broadband_asymmetric_directional-coupler-based_mode_division_demultiplexer

    [26] Li C L, Dai D X. Mode conversion and coupling in silicon-based nanometer photonic integrated circuits[J]. Laser & Optoelectronics Progress, 54, 050003(2017).

    [27] Krauss T F, Brand S et al. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths[J]. Nature, 383, 699-702(1996).

    [28] Qian J R. Coupled-mode theory and its application to fiber optics[J]. Acta Optica Sinica, 29, 1188-1192(2009).

    [29] Hu Y C, Chen H M, Zhou H T et al. Mach-Zehnder modulator based on photonic crystal and nanowire waveguide[J]. Journal of Infrared and Millimeter Waves, 38, 499-507(2019).

    Tong Xiang, Heming Chen, Yuchen Hu. Silicon-Based Integrated Device for Electro-Optic Modulation Assembly with Mode-Division Multiplexing[J]. Chinese Journal of Lasers, 2021, 48(11): 1106001
    Download Citation