• Spectroscopy and Spectral Analysis
  • Vol. 42, Issue 10, 3084 (2022)
Xu-yang WANG1、*, Tao SUN1、1;, Xin-ping ZHU1、1;, Guang-mu TANG2、2;, Hong-tao JIA1、1; *;, and Wan-li XU2、2;
Author Affiliations
  • 11. College of Resources and Environment Science, Xinjiang Agricultural University, Urumqi 830052, China
  • 22. Institute of Soil and Fertilizer & Agricultural Sparing Water, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
  • show less
    DOI: 10.3964/j.issn.1000-0593(2022)10-3084-07 Cite this Article
    Xu-yang WANG, Tao SUN, Xin-ping ZHU, Guang-mu TANG, Hong-tao JIA, Wan-li XU. Phosphorus Species of Biochar Modified by Phosphoric Acid and Pyrophosphoric Acid Based on Spectral Analysis[J]. Spectroscopy and Spectral Analysis, 2022, 42(10): 3084 Copy Citation Text show less

    Abstract

    They can be applied to agriculture by changing the properties of biochar by phosphoric acid (H3PO4) and pyrophosphoric acid (H4P2O7) . It is helpful to revealing the bio-availability of P on its surface for identifying P occurrence form and binding mode of changed biochar for H3PO4 and H4P2O7. This paper adopts wheat stalk biochar (WBC) and cotton stalk biochar (CBC) as raw materials. Meanwhile, this paper prepares changed H3PO4 (P-WBC and P-CBC) and changed biochar of H4P2O7 (PA-WBC and PA-CBC) by H3PO4 and H4P2O7 respectively. This paper adopts Raman spectroscopy (Raman) and scanning electron microscopy (SEM) to characterize the structure and P distribution of the changed biochar. In addition, this paper adopts Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) to investigate the P-binding mode of changed biochar surface. Meanwhile, this paper quantitatively analyzes the changes of P form and content in biochar before and after changing by combining the Hedley phosphorus classification method with visible spectro-photometry. The result shows that the IG/ID value of biochar increases and the graphitization structure enhances to form the P-containing granular structure after changing the properties of H3PO4 and H4P2O7. It has promoted the formation of carboxyl (—COOH), P—O—P and P—H acid functional groups on the surface of biochar for changes of H3PO4 and H4P2O7. They are similar to functional groups on the surface of changed biochar of H3PO4 and changed biochar of H4P2O7. XPS result shows that it increases by 13.15%~32.44% significantly by compared with WBC and CBC for the relative content of O1s peak in the changed treatment. Meanwhile, it also shows that it increases by 18.54%~27.02% significantly for the relative content of the P(2s) peak (p<0.05). They have divided P(2s) and O(1s) into C—P—O, C—O—P, O=P—O C=O and (or) P=O C—O—C and (or) P—O—C and P—O—P for the deconvolution integral peaks. It can promote the formation of C—O—P, O=P—O C—O—C and/or P—O—C and P—O—P bonds for the changed properties of H4P2O7 by comparing with the changed properties of H3PO4. It also significantly increases the total P content in biochar for the changed properties. Meanwhile, it is significantly higher than that in P—WBC and P—CBC for the P content in PA-WBC and PA-CBC. The active P content in the changed treatment significantly increases by 2.36~14.77 g·kg-1 compared with WBC and CBC. In addition, the stable P content significantly decreases by 0.06~0.17g·kg-1 (p<0.05). The active P and moderate active P of PA-WBC and PA-CBC significantly increase by 5.27~15.66 and 0.53~0.64 g·kg-1 respectively. The stable P content decreases by 0.03~0.34 g·kg-1 (p<0.05). In conclusion, it has changed the binding mode of P on biochar surface and increased the activity of P for the changed properties of H3PO4 and H4P2O7. The difference in the content and binding mode of P in different forms between H3PO4 and H4P2O7 modified biochar are of great significance for further exploring the bioarailability of P.
    Xu-yang WANG, Tao SUN, Xin-ping ZHU, Guang-mu TANG, Hong-tao JIA, Wan-li XU. Phosphorus Species of Biochar Modified by Phosphoric Acid and Pyrophosphoric Acid Based on Spectral Analysis[J]. Spectroscopy and Spectral Analysis, 2022, 42(10): 3084
    Download Citation