• High Power Laser and Particle Beams
  • Vol. 31, Issue 10, 103220 (2019)
Jin Wenxuan*, Chai Changchun, Liu Yuqian, Wu Han, and Yang Yintang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.11884/hplpb201931.190218 Cite this Article
    Jin Wenxuan, Chai Changchun, Liu Yuqian, Wu Han, Yang Yintang. Microwave damage susceptibility trend of the silicon NPN monolithic composite transistor as a function of structure parameters[J]. High Power Laser and Particle Beams, 2019, 31(10): 103220 Copy Citation Text show less
    References

    [1] Kim K, Iliadis A A. Latch-up effects in CMOS inverters due to high power pulsed electromagnetic interference[J]. Solid-State Electronics, 2008, 52(10): 1589-1593.

    [2] Kim K, Iliadis A A. Operational upsets and critical new bit errors in CMOS digital inverters due to high power pulsed electromagnetic interference[J]. Solid-State Electronics, 2010, 54(1): 18-21.

    [3] Korte S, Camp M, Garbe H. Hardware and software simulation of transient pulse impact on integrated circuits[C]//2005 International Symposium on Electromagnetic Compatibility. 2005, 2: 489-494.

    [4] Liu Yang, Chai Changchun, Yang Yintang, et al. Damage effect and mechanism of the GaAs high electron mobility transistor induced by high power microwave[J]. Chinese Physics B, 2016, 25(4): 465-470.

    [5] Chen Jie, Du Zhengwei. Device simulation studies on latch-up effects in CMOS inverters induced by microwave pulse[J]. Microelectronics Reliability, 2013, 53(3): 371-378.

    [6] Chen Jie, Du Zhengwei. Understanding and modeling of internal transient latch-up susceptibility in CMOS inverters due to microwave pulses[J]. Microelectronics Reliability, 2013, 53(12): 1891-1896.

    [7] Backstrom M G, Lovstrand K G. Susceptibility of electronic systems to high-power microwaves: Summary of test experience[J]. IEEE Trans Electromag Compat, 2004, 46(3): 396-403.

    [8] Kim K, Iliadis A A. Operational upsets and critical new bit errors in CMOS digital inverters due to high power pulsed electromagnetic interference[J]. Solid State Electronics, 2009, 54(1): 18-21.

    [9] Ma Zhenyang, Chai Changchun, Ren Xingrong, et al. The damage effect and mechanism of the bipolar transistor caused by microwaves[J]. Acta Physica Sinica, 2012, 61(7): 511-517.

    [10] Ma Zhenyang, Chai Changchun, Ren Xingrong, et al. Effects of microwave pulse-width damage on a bipolar transistor[J]. Chinese Physics B, 2012, 21(5): 679-684.

    [11] Zhou Huaian, Du Zhengwei, Gong Ke. Transient response of bipolar junction transistor under intense electromagnetic pulse[J]. High Power Laser and Particle Beams, 2005, 17(12): 1861-1864.

    [12] Ma Zhenyang, Chai Changchun, Ren Xingrong, et al. The pulsed microwave damage trend of a bipolar transistor as a function of pulse parameters[J]. Chinese Physics B, 2013, 22(2): 538-542.

    [13] Ma Zhenyang, Chai Changchun, Ren Xingrong, et al. Microwave damage susceptibility trend of a bipolar transistor as a function of frequency[J]. Chinese Physics B, 2012, 21(9): 565-570.

    [14] Ghandi R, Buono B, Domeij M, et al. High current-gain implantation-free 4H-SIC monolithic Darlington transistor[J]. IEEE Electron Device Letters, 2011, 32(2): 188-190.

    [15] Zhang Qingchun, Jonas C, O’Loughlin M, et al. A 10-kV monolithic Darlington transistor with β of 336 in 4H-SiC[J]. IEEE Electron Device Letters, 2009, 30(2): 142-144.

    [16] Kumar M J, Sharma A. New silicon carbide(SiC) hetero-junction Darlington transistor[C]//2006 Annual IEEE India Conference. 2006.

    [17] Tang Y, Chow T P. Monolithic 4H-SIC Darlington transistor with a peak current gain of 2000[C]//61st Device Research Conference. 2003.

    [18] Lu Yashi, Zhang Wei, Liu Zhihong, et al. A Darlington SiGe microwave monolithic integrated circuit[C]//2006 IEEE Mediterranean Electrotechnical Conference. 2006.

    [19] Chai Changchun, Yang Yintang, Zhang Bing, et al. Mechanism of energy-injection damage of silicon bipolar low-noise amplifiers[J]. J Semicond, 2008(12): 2403-2407.

    [20] Li Hui, Chai Changchun, Yang Yintang, et al. Damage effects and mechanism of the silicon NPN monolithic composite transistor induced by high-power microwaves[J]. Chinese Physics B, 2018, 27(8): 637-643.

    [21] Wang Qiankun, Chai Changchun, Yang Yintang, et al. The influence of pulsed parameters on the damage of a Darlington transistor[J]. Journal of Semiconductors, 2018, 39(9): 2-47.

    [22] Korte S, Camp M, Garbe, H. Hardware and software simulation of transient pulse impact on integrated circuits[C]//IEEE International Symposium on Electromagnetic Compatibility. 2005.

    [23] Wunsch D C, Bell R R. Determination of threshold failure levels of semiconductor diodes and transistors due to pulse voltages[J]. IEEE Trans Nuclear Science, 1968, 15(6): 244-259.

    [24] Tasca D M. Pulse power failure modes in semiconductors[J]. IEEE Trans Nuclear Science, 1970, 17(6): 364-372.

    Jin Wenxuan, Chai Changchun, Liu Yuqian, Wu Han, Yang Yintang. Microwave damage susceptibility trend of the silicon NPN monolithic composite transistor as a function of structure parameters[J]. High Power Laser and Particle Beams, 2019, 31(10): 103220
    Download Citation