• Chinese Optics Letters
  • Vol. 23, Issue 4, 041701 (2025)
Shujiang Chen1,2, Kaixuan Hu1,2, Wei Yi1,2, Fuwang Wu1,2..., Yi Wan1,2, Lei Zhang1,2, Jianmei Li1,2, Aiqun Wang1,2 and Weiye Song1,2,*|Show fewer author(s)
Author Affiliations
  • 1School of Mechanical Engineering, Shandong University, Jinan 250061, China
  • 2Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, Shandong University, Jinan 250061, China
  • show less
    DOI: 10.3788/COL202523.041701 Cite this Article Set citation alerts
    Shujiang Chen, Kaixuan Hu, Wei Yi, Fuwang Wu, Yi Wan, Lei Zhang, Jianmei Li, Aiqun Wang, Weiye Song, "Method for measuring retinal capillary blood flow velocity by encoded OCTA," Chin. Opt. Lett. 23, 041701 (2025) Copy Citation Text show less
    References

    [1] W. Liu, S. Wang, B. Soetikno et al. Increased retinal oxygen metabolism precedes microvascular alterations in type 1 diabetic mice. Investig. Opthalmology Vis. Sci., 58, 981(2017).

    [2] S. Selvam, T. Kumar, M. Fruttiger. Retinal vasculature development in health and disease. Prog. Retin. Eye Res., 63, 1(2018).

    [3] E. Courtie, T. Veenith, A. Logan et al. Retinal blood flow in critical illness and systemic disease: a review. Ann. Intensive Care, 10, 152(2020).

    [4] A. J. Rong, S. S. Swaminathan, E. A. Vanner et al. Predictors of neovascular glaucoma in central retinal vein occlusion. Am. J. Ophthalmol., 204, 62(2019).

    [5] J. Tam, K. P. Dhamdhere, P. Tiruveedhula et al. Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 52, 9257(2011).

    [6] J. Tam, K. P. Dhamdhere, P. Tiruveedhula et al. Subclinical capillary changes in non-proliferative diabetic retinopathy. Optom. Vis. Sci., 89, E692(2012).

    [7] S. A. Burns, A. E. Elsner, T. Y. Chui et al. In vivo adaptive optics microvascular imaging in diabetic patients without clinically severe diabetic retinopathy. Biomed. Opt. Express, 5, 961(2014).

    [8] B. Gu, X. Wang, M. D. Twa et al. Noninvasive in vivo characterization of erythrocyte motion in human retinal capillaries using high-speed adaptive optics near-confocal imaging. Biomed. Opt. Express, 9, 3653(2018).

    [9] J. Tam, J. A. Martin, A. Roorda. Noninvasive visualization and analysis of parafoveal capillaries in humans. Invest. Ophthalmol. Vis. Sci., 51, 1691(2010).

    [10] D. Huang, E. A. Swanson, C. P. Lin et al. Optical coherence tomography. Science, 254, 1178(1991).

    [11] W. Song, L. Zhou, S. Zhang et al. Fiber-based visible and near infrared optical coherence tomography (vnOCT) enables quantitative elastic light scattering spectroscopy in human retina. Biomed. Opt. Express, 9, 3464(2018).

    [12] J. Wang, S. Nolen, W. Song et al. A dual-channel visible light optical coherence tomography system enables wide-field, full-range, and shot-noise limited human retinal imaging. Commun. Eng., 3, 1(2024).

    [13] Y. Jia, O. Tan, J. Tokayer et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt. Express, 20, 4710(2012).

    [14] T. T. Hormel, Y. Jia. OCT angiography and its retinal biomarkers. Biomed. Opt. Express, 14, 4542(2023).

    [15] Y. Li, W. J. Choi, W. Wei et al. Aging-associated changes in cerebral vasculature and blood flow as determined by quantitative optical coherence tomography angiography. Neurobiol. Aging, 70, 148(2018).

    [16] A. Wylegala, S. Teper, D. Dobrowolski et al. Optical coherence angiography: a review. Medicine, 95, e4907(2016).

    [17] Y. Zhao, Z. Chen, C. Saxer et al. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt. Lett., 25, 114(2000).

    [18] M. Wan, S. Liang, X. Li et al. Dual-beam delay-encoded all fiber doppler optical coherence tomography for in vivo measurement of retinal blood flow. Chin. Opt. Lett., 20, 011701(2022).

    [19] S. Desissaire, F. Schwarzhans, M. Salas et al. Analysis of longitudinal sections of retinal vessels using doppler OCT. Biomed. Opt. Express, 11, 1772(2020).

    [20] J. Tang, S. E. Erdener, B. Fu et al. Capillary red blood cell velocimetry by phase-resolved optical coherence tomography. Opt. Lett., 42, 3976(2017).

    [21] X. Guo, G. Ren, J. Tang. Autocorrelation analysis-based OCT velocimetry for axial blood flow velocity imaging of the cerebral capillary network. Opt. Lett., 48, 3599(2023).

    [22] V. J. Srinivasan, H. Radhakrishnan, E. H. Lo et al. OCT methods for capillary velocimetry. Biomed. Opt. Express, 3, 612(2012).

    [23] W. J. Choi, Y. Li, W. Qin et al. Cerebral capillary velocimetry based on temporal OCT speckle contrast. Biomed. Opt. Express, 7, 4859(2016).

    [24] Y. Hwang, J. Won, A. Yaghy et al. Retinal blood flow speed quantification at the capillary level using temporal autocorrelation fitting OCTA. Biomed. Opt. Express, 14, 2658(2023).

    [25] A. Joseph, A. Guevara-Torres, J. Schallek. Imaging single-cell blood flow in the smallest to largest vessels in the living retina. eLife, 8, e45077(2019).

    [26] A. Joseph, C. J. Chu, G. Feng et al. Label-free imaging of immune cell dynamics in the living retina using adaptive optics. eLife, 9, e60547(2020).

    [27] R. Liu, X. Wang, S. Hoshi et al. High-speed measurement of retinal arterial blood flow in the living human eye with adaptive optics ophthalmoscopy. Opt. Lett., 48, 1994(2023).

    [28] S. Neriyanuri, P. Bedggood, R. C. A. Symons et al. Validation of an automated method for studying retinal capillary blood flow. Biomed. Opt. Express, 15, 802(2024).

    [29] W. Song, L. Zhou, J. Yi. Volumetric fluorescein angiography (vFA) by oblique scanning laser ophthalmoscopy in mouse retina at 200 B-scans per second. Biomed. Opt. Express, 10, 4907(2019).

    [30] D. G. Lyons, A. Parpaleix, M. Roche et al. Mapping oxygen concentration in the awake mouse brain. eLife, 5, e12024(2016).

    [31] W. Yi, K. Hu, Y. Wan et al. A high-speed near-infrared optical coherence tomography angiography system for mouse retina. J. Lumin., 270, 120550(2024).

    [32] R. K. Wang, S. L. Jacques, Z. Ma et al. Three dimensional optical angiography. Opt. Express, 15, 4083(2007).

    [33] A. Poggio, M. Edmund. Integral Equation Solutions of Three-Dimensional Scattering Problems(1973).

    [34] W. Lotmar, A. Freiburghaus, D. Bracher. Measurement of vessel tortuosity on fundus photographs. Albrecht Von Graefes Arch. Für Klin. Exp. Ophthalmol., 211, 49(1979).

    [35] J. Li, D. Wang, J. Pottenburgh, A. J. Bower et al. Visualization of erythrocyte stasis in the living human eye in health and disease. iScience, 26, 105755(2023).

    [36] N. Korte, R. Nortley, D. Attwell. Cerebral blood flow decrease as an early pathological mechanism in Alzheimer’s disease. Acta Neuropathol., 140, 793(2020).

    Shujiang Chen, Kaixuan Hu, Wei Yi, Fuwang Wu, Yi Wan, Lei Zhang, Jianmei Li, Aiqun Wang, Weiye Song, "Method for measuring retinal capillary blood flow velocity by encoded OCTA," Chin. Opt. Lett. 23, 041701 (2025)
    Download Citation