• Laser Journal
  • Vol. 45, Issue 6, 1 (2024)
LIANG Xiaofeng1, LI Hang2,*, WANG Yalan2, RONG Kepeng2..., WANG Yipeng2 and JIA Kai2|Show fewer author(s)
Author Affiliations
  • 1Department of Naval Armament, Chengdu 610000, China
  • 2Southwest Institute of Technical Physics, Chengdu 610041, China
  • show less
    DOI: 10.14016/j.cnki.jgzz.2024.06.001 Cite this Article
    LIANG Xiaofeng, LI Hang, WANG Yalan, RONG Kepeng, WANG Yipeng, JIA Kai. Research progress of the generation of vortex beams[J]. Laser Journal, 2024, 45(6): 1 Copy Citation Text show less
    References

    [1] Coullet P, Gil L, Rocca F. Optics vortices[J]. Optics Communications, 1989, 73(5): 403-408.

    [2] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

    [3] Beijersbergen M W, Allen L, Van der Veen H, et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 1993, 96(1-3): 123-132.

    [4] Ohtomo T, Chu S C, Otsuka K. Generation of vortex beams from lasers with controlled Hermite - and Ince - Gaussian modes[J]. Optics Express, 2008, 16(7): 5082-5094.

    [5] Chu S C, Chen Y T, Tsai K F, et al. Generation of highorder Hermite-Gaussian modes in end-pumped solid-state lasers for square vortex array laser beam generation[J]. Optics Express, 2012, 20(7): 7128-7141.

    [6] Kotlyar V V, Kovalev A A, Porfirev A P. Astigmatic laser beams with a large orbital angular momentum[J]. Optics Express, 2018, 26(1): 141-156.

    [7] López-Mariscal C, Gutiérrez-Vega J C. The generation of nondiffracting beams using inexpensive computer-generated holograms[J]. American Journal of Physics, 2007, 75(1): 36-42.

    [8] Lu Y, Jiang B, Lü S, et al. Arrays of Gaussian vortex, Bessel and Airy beams by computer - generated hologram[J]. Optics Communications, 2016, 363: 85-90.

    [9] Dai H T, Liu Y J, Luo D, et al. Propagation properties of an optical vortex carried by an Airy beam: experimental implementation[J]. Optics Letters, 2011, 36(9): 1617-1619.

    [10] Chen Y, Fang Z X, Ren Y X, et al. Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device[J]. Applied Optics, 2015, 54(27): 8030-8035.

    [11] Swartzlander G A, Ford E L, Abdul-Malik R S, et al. Astronomical demonstration of an optical vortex coronagraph[J]. Optics Express, 2008, 16(14): 10200-10207.

    [12] Fürhapter S, Jesacher A, Bernet S, et al. Spiral phase contrast imaging in microscopy[J]. Optics Express, 2005, 13(3): 689-694.

    [13] Molina-Terriza G, Torres J P, Torner L. Twisted photons[J]. Nature Physics, 2007, 3(5): 305-310.

    [14] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496.

    [15] Fickler R, Lapkiewicz R, Plick W N, et al. Quantum entanglement of high angular momenta[J]. Science, 2012, 338(6107): 640-643.

    [16] Berry M V. Optical vortices evolving from helicoidal integer and fractional phase steps[J]. Journal of Optics A: Pure and Applied Optics, 2004, 6(2): 259.

    [17] Harris M, Hill C A, Tapster P R, et al. Laser modes with helical wave fronts[J]. Physical Review A, 1994, 49(4): 3119.

    [18] Soskin M S, Gorshkov V N, Vasnetsov M V, et al. Topological charge and angular momentum of light beams carrying optical vortices[J]. Physical Review A, 1997, 56(5): 4064.

    [19] De Araujo L E E, Anderson M E. Measuring vortex charge with a triangular aperture[J]. Optics Letters, 2011, 36(6): 787-789.

    [20] Melo L A, Jesus-Silva A J, Chávez-Cerda S, et al. Direct measurement of the topological charge in elliptical beams using diffraction by a triangular aperture[J]. Scientific Reports, 2018, 8(1): 6370.

    [21] Ghai D P, Senthilkumaran P, Sirohi R S. Single-slit diffraction of an optical beam with phase singularity[J]. Optics and Lasers in Engineering, 2009, 47(1): 123-126.

    [22] Taira Y, Zhang S. Split in phase singularities of an optical vortex by off-axis diffraction through a simple circular aperture[J]. Optics Letters, 2017, 42(7): 1373-1376

    [23] Ambuj A, Vyas R, Singh S. Diffraction of orbital angular momentum carrying optical beams by a circular aperture[J]. Optics Letters, 2014, 39(19): 5475-5478.

    [24] Mesquita P H F, Jesus-Silva A J, Fonseca E J S, et al. Engineering a square truncated lattice with light’ s orbital angular momentum[J]. Optics Express, 2011, 19(21): 20616-20621.

    [25] Zhang L, Shen B, Zhang X, et al. Deflection of a reflected intense vortex laser beam[J]. Physical Review Letters, 2016, 117(11): 113904.

    [26] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

    [27] Niederriter R D, Siemens M E, Gopinath J T. Continuously tunable orbital angular momentum generation using a polarization-maintaining fiber[J]. Optics Letters, 2016, 41(14): 3213-3216.

    [28] Wu S, Li Y, Feng L, et al. Continuously tunable orbital angular momentum generation controlled by input linear polarization[J]. Optics Letters, 2018, 43(9): 2130-2133.

    [29] Mao D, Li M, He Z, et al. Optical vortex fiber laser based on modulation of transverse modes in two mode fiber[J]. APL Photonics, 2019, 4(6): 060801.

    [30] Massari M, Ruffato G, Gintoli M, et al. Fabrication and characterization of high-quality spiral phase plates for optical applications[J]. Applied Optics, 2015, 54(13): 4077-4083.

    [31] Shi L, Zhang Z, Cao A, et al. One exposure processing to fabricate spiral phase plate with continuous surface[J]. Optics Express, 2015, 23(7): 8620-8629.

    [32] Sueda K, Miyaji G, Miyanaga N, et al. Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses[J]. Optics Express, 2004, 12(15): 3548-3553.

    [33] Jun C, Deng-Feng K, Min G, et al. Generation of optical vortex using a spiral phase plate fabricated in quartz by direct laser writing and inductively coupled plasma etching[J]. Chinese Physics Letters, 2009, 26(1): 014202.

    [34] Oemrawsingh S S R, Van Houwelingen J A W, Eliel E R, et al. Production and characterization of spiral phase plates for optical wavelengths[J]. Applied Optics, 2004, 43(3): 688-694.

    [35] Ruffato G, Massari M, Carli M, et al. Spiral phase plates with radial discontinuities for the generation of multiring orbital angular momentum beams: fabrication, characterization, and application[J]. Optical Engineering, 2015, 54(11): 111307-111307.

    [36] Kostyuk G, Shkuratova V, Petrov A, et al. Spiral phase plate for generation of scalar vortex beam made on fused silica by laser-induced microplasma[J]. Optical and Quantum Electronics, 2023, 55(4): 344.

    [37] Heckenberg N R, McDuff R, Smith C P, et al. Generation of optical phase singularities by computer-generated holograms[J]. Optics Letters, 1992, 17(3): 221-223.

    [38] Forbes A, Dudley A, McLaren M. Creation and detection of optical modes with spatial light modulators[J]. Advances in Optics and Photonics, 2016, 8(2): 200-227.

    [39] Rosales-Guzmán C, Forbes A. How to shape light with spatial light modulators[C]//Society of Photo-Optical Instrumentation Engineers (SPIE), 2017.

    [40] Vasilyeu R, Dudley A, Khilo N, et al. Generating super-positions of higher - order Bessel beams[J]. Optics Express, 2009, 17(26): 23389-23395.

    [41] Dudley A, Li Y, Mhlanga T, et al. Generating and measuring nondiffracting vector Bessel beams[J]. Optics Letters, 2013, 38(17): 3429-3432.

    [42] Dharmavarapu R, Vijayakumar A, Bhattacharya S. Design and fabrication of holographic optical elements for the generation of tilted and accelerating Airy beams[J]. Asian J. Phys, 2015, 24(10): 1363-1372.

    [43] Chen Y, Fang Z X, Ren Y X, et al. Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device[J]. Applied Optics, 2015, 54(27): 8030-8035.

    [44] Fu S, Wang T, Gao C. Perfect optical vortex array with controllable diffraction order and topological charge[J]. JOSA A, 2016, 33(9): 1836-1842.

    [45] Vijayakumar A, Rosales-Guzmán C, Rai M R, et al. Generation of structured light by multilevel orbital angular momentum holograms[J]. Optics Express, 2019, 27(5): 6459-6470.

    [46] Huang K, Liu H, Restuccia S, et al. Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum[J]. Light: Science & Applications, 2018, 7(3): 17156-17156.

    [47] Min C, Liu J, Lei T, et al. Plasmonic nano-slits assisted polarization selective detour phase meta-hologram. Laser & Photonics Reviews, 2021, 10: 978-985.

    [48] Yan Y, Zhang L, Wang J, et al. Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes[J]. Optics Letters, 2012, 37(16): 3294-3296.

    [49] Biener G, Niv A, Kleiner V, et al. Formation of helical beams by use of Pancharatnam - Berry phase optical elements[J]. Optics Letters, 2002, 27(21): 1875-1877.

    [50] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905.

    [51] Niv A, Biener G, Kleiner V, et al. Spiral phase elements obtained by use of discrete space - variant subwavelength gratings[J]. Optics Communications, 2005, 251(4-6): 306-314.

    [52] Wang X, Kuchmizhak A, Hu D, et al. Multiple orbital angular momentum generated by dielectric hybrid phase element[C]//AIP Conference Proceedings. AIP Publishing, 2017, 1874(1).

    [53] Devlin R C, Ambrosio A, Rubin N A, et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 2017, 358(6365): 896-901.

    [54] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901.

    [55] Lin D, Daniel J M O, Clarkson W A. Controlling the handedness of directly excited Laguerre-Gaussian modes in a solid-state laser[J]. Optics Letters, 2014, 39(13): 3903-3906.

    [56] Kim D J, Kim J W. Direct generation of an optical vortex beam in a single-frequency Nd: YVO4 laser[J]. Optics Letters, 2015, 40(3): 399-402.

    [57] Sroor H, Huang Y W, Sephton B, et al. High-purity orbital angular momentum states from a visible metasurface laser[J]. Nature Photonics, 2020, 14(8): 498-503.

    [58] Munj A H, Kerridge-Johns W R. Unidirectional ring vortex laser using a wedge-plate shearing interferometer[J]. Optics Express, 2023, 31(3): 4954-4963.

    [59] Luo K H, Ma R, Wu H, et al. Flexible generation of broadly wavelength-and OAM-tunable Laguerre-Gaussian (LG) modes from a random fiber laser[J]. Optics Express, 2023, 31(19): 30639-30649.

    [60] Harrison J, Forbes A, Naidoo D. Amplification of higher-order Laguerre-Gaussian modes using a dual-pass MOPA system[J]. Optics Express, 2023, 31(11): 17408.

    [61] Hai L, Zhang Z, Li L, et al. Power amplification for 1.6 μm high-order vortex modes[J]. Optics Express, 2023, 31(21): 35305-35312.

    [62] Xiao R, Tu J, Li W, et al. Third-order orbital angular momentum pulse generation from a passively Q-switched fiber laser[J]. Optics Express, 2022, 30(8): 12605-12614..

    [63] Geberbauer J W T, Kerridge-Johns W R, Damzen M J. > 30 W vortex LG01 or HG10 laser using a mode transforming output coupler[J]. Optics Express, 2021, 29(18): 29082-29094.

    [64] Yang Q, Yang Z, Cai D, et al. Direct generation of continuous-wave and passively Q-switched visible vortex beams from a doughnut-shaped diode-pumped Pr: YLF laser[J]. Optics Express, 2022, 30(13): 23909-23917.

    [65] Hu Y, Ma Z, Zhao W, et al. Controlled generation of mode-switchable nanosecond pulsed vector vortex beams from a Q-switched fiber laser[J]. Optics Express, 2022, 30(18): 33195-33207.

    [66] Wang W P, Jiang C, Dong H, et al. Hollow plasma acceleration driven by a relativistic reflected hollow laser[J]. Physical Review Letters, 2020, 125(3): 034801.

    [67] Guo P, Pu Y, Zhu J, et al. Ultrafast vortex arrays generated from a mode-locked oscillator with dispersion management[J]. Optics Letters, 2023, 48(18): 4865-4868.

    [68] Zhao Y, Wang L, Chen W, et al. Structured laser beams: toward 2 μm femtosecond laser vortices[J]. Photonics Research, 2021, 9(3): 357-363.

    [69] Chen Z, Zheng S, Lu X, et al. Forty-five terawatt vortex ultrashort laser pulses from a chirped-pulse amplification system[J]. High Power Laser Science and Engineering, 2022, 10: e32.

    [70] Peng Z, Wang Q, Chen H, et al. High-power femtosecond vortices generated from a Kerr-lens mode-locked solid-state Hermite - Gaussian oscillator[J]. Optics Letters, 2023, 48(10): 2708-2711.

    [71] Liu H, Yan L, Chen H, et al. High-order femtosecond vortices up to the 30th order generated from a powerful mode-locked Hermite-Gaussian laser[J]. Light: Science & Applications, 2023, 12(1): 207.

    [72] Sharma V, Samanta G K, Kumar S C, et al. Tunable ultraviolet vortex source based on a continuous-wave optical parametric oscillator[J]. Optics Letters, 2019, 44(19): 4694-4697.

    [73] Miyamoto K, Sano K, Miyakawa T, et al. Generation of high-quality terahertz OAM mode based on soft-aperture difference frequency generation[J]. Optics Express, 2019, 27(22): 31840-31849.

    [74] Araki S, Ando K, Miyamoto K, et al. Ultra-widely tunable mid-infrared (6-18 μm) optical vortex source[J]. Applied Optics, 2018, 57(4): 620-624.

    [75] Sharma V, Kumar S C, Samanta G K, et al. Multi-structured-beam optical parametric oscillator[J]. Optics Express, 2020, 28(15): 21650-21658.

    [76] Gao X, Zhao Y, Wang J, et al. Spatiotemporal optical vortices generation in the green and ultraviolet via frequency upconversion[J]. Chinese Optics Letters, 2023, 21(8): 080004.

    [77] Liu Z F, Ren Z C, Lou Y C, et al. Control of harmonic orbital angular momentum in second-harmonic generation of perfect vortices[J]. Physical Review A, 2022, 105(6): 063518.

    [78] Tong H, Xie G, Qiao Z, et al. Generation of a mid-infrared femtosecond vortex beam from an optical parametric oscillator[J]. Optics Letters, 2020, 45(4): 989-992.

    [79] Pandey A K, de las Heras A, Larrieu T, et al. Characterization of extreme ultraviolet vortex beams with a very high topological charge[J]. ACS Photonics, 2022, 9(3): 944-951.

    [80] de las Heras A, Pandey A K, San Román J, et al. Extreme-ultraviolet vector-vortex beams from high harmonic generation[J]. Optica, 2022, 9(1): 71-79.

    [81] Hu Y T, Zhao J, Zhang H, et al. Attosecond γ-ray vortex generation in near-critical-density plasma driven by twisted laser pulses[J]. Applied Physics Letters, 2021, 118(5).

    [82] Géneaux R, Camper A, Auguste T, et al. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet[J]. Nature Communications, 2016, 7(1): 12583.

    [83] Dorney K M, Rego L, Brooks N J, et al. Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin-orbit momentum conservation[J]. Nature Photonics, 2019, 13(2): 123-130.

    [84] Qian H, Markman B D, Giebink N C. Vector vortex beam emission from organic semiconductor microlasers[J]. Applied Physics Letters, 2013, 103(16): 1101-1112.

    [85] Li H, Phillips D B, Wang X, et al. Orbital angular momentum vertical-cavity surface-emitting lasers[J]. Optica, 2015, 2(6): 547-552.

    [86] Zhang J, Sun C, Xiong B, et al. An InP - based vortex beam emitter with monolithically integrated laser[J]. Nature Communications, 2018, 9(1): 2652.

    [87] Zhang Z, Qiao X, Midya B, et al. Tunable topological charge vortex microlaser[J]. Science, 2020, 368(6492): 760-763.

    [88] Qiao Z, Gong C, Liao Y, et al. Tunable optical vortex from a nanogroove-structured optofluidic microlaser[J]. Nano Letters, 2021, 22(3): 1425-1432.

    [89] Zhang Z, Zhao H, Pires D G, et al. Ultrafast control of fractional orbital angular momentum of microlaser emissions[J]. Light: Science & Applications, 2020, 9(1): 179.

    [90] Sun W, Liu Y, Qu G, et al. Lead halide perovskite vortex microlasers[J]. Nature Communications, 2020, 11(1): 4862.

    [91] Kerridge-Johns W R, Jaillot J B, Damzen M J. Sampling a vortex from a Gaussian beam using a wedge-plate shearing interferometer[J]. Applied Optics, 2021, 60(12): 3510-3516.

    LIANG Xiaofeng, LI Hang, WANG Yalan, RONG Kepeng, WANG Yipeng, JIA Kai. Research progress of the generation of vortex beams[J]. Laser Journal, 2024, 45(6): 1
    Download Citation