• Advanced Photonics
  • Vol. 5, Issue 1, 016002 (2023)
Wenbin Zhang1、2、3、*, Yongzhe Ma1, Chenxu Lu1, Fei Chen1, Shengzhe Pan1, Peifen Lu1, Hongcheng Ni1、4、*, and Jian Wu1、4、5、*
Author Affiliations
  • 1East China Normal University, State Key Laboratory of Precision Spectroscopy, Shanghai, China
  • 2Ludwig-Maximilians-Universität Munich, Department of Physics, Garching, Germany
  • 3Max Planck Institute of Quantum Optics, Garching, Germany
  • 4Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, China
  • 5CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai, China
  • show less
    DOI: 10.1117/1.AP.5.1.016002 Cite this Article Set citation alerts
    Wenbin Zhang, Yongzhe Ma, Chenxu Lu, Fei Chen, Shengzhe Pan, Peifen Lu, Hongcheng Ni, Jian Wu. Rydberg state excitation in molecules manipulated by bicircular two-color laser pulses[J]. Advanced Photonics, 2023, 5(1): 016002 Copy Citation Text show less
    References

    [1] M. Saffman, T. G. Walker, K. Molmer. Quantum information with Rydberg atoms. Rev. Mod. Phys., 82, 2313-2363(2010).

    [2] J. P. Shaffer, S. T. Rittenhouse, H. R. Sadeghpour. Ultracold Rydberg molecules. Nat. Commun., 9, 1965(2018).

    [3] M. Y. Zakharov, N. N. Bezuglov, A. N. Klycharev. Rydberg atoms in astrophysics. New Astron. Rev., 53, 259-265(2009).

    [4] A. Facon et al. A sensitive electrometer based on a Rydberg atom in a Schrodinger-cat state. Nature, 535, 262-265(2016).

    [5] L. Li, Y. O. Dudin, A. Kuzmich. Entanglement between light and an optical atomic excitation. Nature, 498, 466-469(2013).

    [6] T. Peyronel et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature, 488, 57-60(2012).

    [7] V. Bendkowsky et al. Observation of ultralong-range molecules. Nature, 458, 1005-1008(2009).

    [8] D. Maxwell et al. Storage and control of optical photons using Rydberg polaritons. Phys. Rev. Lett., 110, 103001(2013).

    [9] U. Eichmann et al. Acceleration of neutral atoms in strong short-pulse laser fields. Nature, 461, 1261-1264(2009).

    [10] S. D. Hogan, C. Seiler, F. Merkt. Rydberg-state-enabled deceleration and trapping of cold molecules. Phys. Rev. Lett., 103, 123001(2009).

    [11] W. Xiong et al. Mechanisms of below-threshold harmonic generation in atoms. Phys. Rev. Lett., 112, 233001(2014).

    [12] H. Yun et al. Coherent extreme-ultraviolet emission generated through frustrated tunnelling ionization. Nat. Photonics, 12, 620-624(2018).

    [13] M. Fushitani et al. Femtosecond two-photon Rabi oscillations in excited he driven by ultrashort intense laser fields. Nat. Photonics, 10, 102-105(2016).

    [14] M. P. de Boer, H. G. Muller. Observation of large populations in excited states after short-pulse multiphoton ionization. Phys. Rev. Lett., 68, 2747-2750(1992).

    [15] R. R. Jones, D. W. Schumacher, P. H. Bucksbaum. Population trapping in Kr and Xe in intense laser fields. Phys. Rev. A, 47, R49-R52(1993).

    [16] G. N. Gibson, L. Fang, B. Moser. Direct femtosecond laser excitation of the 2p state of h by a resonant seven-photon transition in H2+. Phys. Rev. A, 74, 041401(2006). https://doi.org/10.1103/PhysRevA.74.041401

    [17] Q. Li et al. Fine structures in the intensity dependence of excitation and ionization probabilities of hydrogen atoms in intense 800-nm laser pulses. Phys. Rev. A, 89, 023421(2014).

    [18] W. Zhang et al. Electron-nuclear correlated multiphoton-route to Rydberg fragments of molecules. Nat. Commun., 10, 757(2019).

    [19] J. Ma et al. Strong-field dissociative Rydberg excitation of oxygen molecules: electron-nuclear correlation. Phys. Rev. A, 100, 063413(2019).

    [20] B.-B. Wang et al. Coulomb potential recapture effect in above-barrier ionization in laser pulses. Chin. Phys. Lett., 23, 2729-2732(2006).

    [21] T. Nubbemeyer et al. Strong-field tunneling without ionization. Phys. Rev. Lett., 101, 233001(2008).

    [22] T. Nubbemeyer, U. Eichmann, W. Sandner. Excited neutral atomic fragments in the strong-field dissociation of N2 molecules. J. Phys. B: At. Mol. Opt. Phys., 42, 134010(2009).

    [23] J. McKenna et al. Frustrated tunneling ionization during laser-induced D2 fragmentation: detection of excited metastable D* atoms. Phys. Rev. A, 84, 043425(2011).

    [24] J. McKenna et al. Frustrated tunnelling ionization during strong field fragmentation of D3+. New J. Phys., 14, 103029(2012). https://doi.org/10.1088/1367-2630/14/10/103029

    [25] B. Ulrich et al. Double-ionization mechanisms of the argon dimer in intense laser fields. Phys. Rev. A, 82, 013412(2010).

    [26] B. Manschwetus et al. Mechanisms underlying strong-field double ionization of argon dimers. Phys. Rev. A, 82, 013413(2010).

    [27] J. Wu et al. Multiple recapture of electrons in multiple ionization of the argon dimer by a strong laser field. Phys. Rev. Lett., 107, 043003(2011).

    [28] X. Xie et al. Tunneling electron recaptured by an atomic ion or a molecular ion. Phys. Rev. A, 88, 065401(2013).

    [29] S. Larimian et al. Localizing high-lying Rydberg wave packets with two-color laser fields. Phys. Rev. A, 96, 021403(2017).

    [30] W. Zhang et al. Tracking the electron recapture in dissociative frustrated double ionization of D2. Phys. Rev. A, 98, 013419(2018).

    [31] S. Xu et al. Observation of a transition in the dynamics of strong-field atomic excitation. Phys. Rev. A, 102, 043104(2020).

    [32] H. Zimmermann et al. Unified time and frequency picture of ultrafast atomic excitation in strong laser fields. Phys. Rev. Lett., 118, 013003(2017).

    [33] K. Lin et al. Directional bond breaking by polarization-gated two-color ultrashort laser pulses. J. Phys. B: At. Mol. Opt. Phys., 49, 025603(2015).

    [34] C. A. Mancuso et al. Controlling electron-ion rescattering in two-color circularly polarized femtosecond laser fields. Phys. Rev. A, 93, 053406(2016).

    [35] J. L. Chaloupka, D. D. Hickstein. Dynamics of strong-field double ionization in two-color counter-rotating fields. Phys. Rev. Lett., 116, 143005(2016).

    [36] C. A. Mancuso et al. Controlling nonsequential double ionization in two-color circularly polarized femtosecond laser fields. Phys. Rev. Lett., 117, 133201(2016).

    [37] S. Eckart et al. Nonsequential double ionization by counter-rotating circularly polarized two-color laser fields. Phys. Rev. Lett., 117, 133202(2016).

    [38] K. Lin et al. Comparison study of strong-field ionization of molecules and atoms by bicircular two-color femtosecond laser pulses. Phys. Rev. Lett., 119, 203202(2017).

    [39] A. Fleischer et al. Spin angular momentum and tunable polarization in high-harmonic generation. Nat. Photonics, 8, 543-549(2014).

    [40] O. Kfir et al. Generation of bright phase-matched circularly polarized extreme ultraviolet high harmonics. Nat. Photonics, 9, 99-105(2015).

    [41] D. D. Hickstein et al. Non-collinear generation of angularly isolated circularly polarized high harmonics. Nat. Photonics, 9, 743-750(2015).

    [42] W. Zhang et al. All-optical nanoscopic spatial control of molecular reaction yields on nanoparticles. Optica, 9, 551-560(2022).

    [43] C. Cao et al. Frustrated tunneling ionization in strong circularly polarized two-color laser fields. J. Phys. B: At. Mol. Opt. Phys., 54, 035601(2021).

    [44] G. P. Katsoulis, R. Sarkar, A. Emmanouilidou. Enhancing frustrated double ionization with no electronic correlation in triatomic molecules using counter-rotating two-color circular laser fields. Phys. Rev. A, 101, 033403(2020).

    [45] R. Dörner et al. Cold target recoil ion momentum spectroscopy: a ‘momentum microscope’ to view atomic collision dynamics. Phys. Rep., 330, 95-192(2000).

    [46] J. Ullrich et al. Recoil-ion and electron momentum spectroscopy: reaction-microscopes. Rep. Prog. Phys., 66, 1463-1545(2003).

    [47] S. Alnaser et al. Laser-peak-intensity calibration using recoil-ion momentum imaging. Phys. Rev. A, 70, 023413(2004).

    [48] W. Zhang et al. Photon-number-resolved asymmetric dissociative single ionization of H2. Phys. Rev. A, 96, 033405(2017). https://doi.org/10.1103/PhysRevA.96.033405

    [49] S. Larimian et al. Coincidence spectroscopy of high-lying Rydberg states produced in strong laser fields. Phys. Rev. A, 94, 033401(2016).

    [50] H. Zimmermann et al. Strong-field excitation of helium: bound state distribution and spin effects. Phys. Rev. Lett., 114, 123003(2016).

    [51] E. Diesen et al. Dynamical characteristics of Rydberg electrons released by a weak electric field. Phys. Rev. Lett., 116, 143006(2016).

    [52] H. Lv et al. Comparative study on atomic and molecular Rydberg-state excitation in strong infrared laser fields. Phys. Rev. A, 93, 033415(2016).

    [53] W. Zhang et al. Visualizing and steering dissociative frustrated double ionization of hydrogen molecules. Phys. Rev. Lett., 119, 253202(2017).

    [54] A. Azarm et al. Neutral dissociation of hydrogen molecules in a strong laser field through superexcited states. J. Phys. B, 44, 085601(2011).

    [55] C. A. Mancuso et al. Observation of ionization enhancement in two-color circularly polarized laser fields. Phys. Rev. A, 96, 023402(2017).

    [56] C. Guo et al. Single and double ionization of diatomic molecules in strong laser fields. Phys. Rev. A, 58, R4271-R4274(1998).

    [57] B. Manschwetus et al. Strong laser field fragmentation of H2: Coulomb explosion without double ionization. Phys. Rev. Lett., 102, 113002(2009). https://doi.org/10.1103/PhysRevLett.102.113002

    [58] A. Emmanouilidou et al. Routes to formation of highly excited neutral atoms in the breakup of strongly driven H2. Phys. Rev. A, 85, 011402(2012). https://doi.org/10.1103/PhysRevA.85.011402

    [59] T. Zuo, A. D. Bandrauk. Charge-resonance-enhanced ionization of diatomic molecular ions by intense lasers. Phys. Rev. A, 52, R2511-R2514(1995).

    [60] M. V. Ammosov, N. B. Delone, V. P. Krainov. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP, 64, 1191-1194(1986).

    [61] N. Shvetsov-Shilovski et al. Capture into Rydberg states and momentum distributions of ionized electrons. Laser Phys., 19, 1550-1558(2009).

    [62] S. V. Popruzhenko. Quantum theory of strong-field frustrated tunneling. J. Phys. B, 51, 014002(2018).

    [63] S. Hu et al. Quantum dynamics of atomic Rydberg excitation in strong laser fields. Opt. Express, 27, 31629-31643(2019).

    [64] E. Olofsson, S. Carlström, J. M. Dahlström. Frustrated tunneling dynamics in ultrashort laser pulses. J. Phys. B, 54, 154002(2021).

    Wenbin Zhang, Yongzhe Ma, Chenxu Lu, Fei Chen, Shengzhe Pan, Peifen Lu, Hongcheng Ni, Jian Wu. Rydberg state excitation in molecules manipulated by bicircular two-color laser pulses[J]. Advanced Photonics, 2023, 5(1): 016002
    Download Citation