[1] Xu J Q, Du W Y, Sun Q, et al. Electro-optic coefficients of a non-congruent lithium niobate fabricated by vapour transport equilibration: composition effect[J]. Opto-Electronics Review, 2017, 25: 89-92.
[2] Hua P R, Dong J J, Ren K, et al. Erasure of ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide by Li-rich vapor-transport equilibration[J]. Journal of Alloys and Compounds, 2015, 626: 203-207.
[3] Wei D, Wang C, Wang H, et al. Experimental demonstration of A three-dimensional lithium niobate nonlinear photonic crystal[J]. Nature Photonics, 2018, 12: 596-600.
[4] Zhang G, Tomita Y. Broadband absorption changes and sensitization of near-infrared photorefractivity induced by ultraviolet light in LiNbO3∶Mg[J]. Journal of Applied Physics, 2002, 91: 4177-4180.
[5] Lengyel K, Péter á, Kovács L, et al. Growth, defect structure, and THz application of stoichiometric lithium niobate[J]. Applied Physics Reviews, 2015, 2(4): 040601.
[6] Kong Y, Liu S, Xu J. Recent advances in the photorefraction of doped lithium niobate crystals[J]. Materials, 2012, 5: 1954-1971.
[7] Wang Y, Tang L, Xu D, et al. Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-Doped near-stoichiometric LiNbO3 crystal[J]. Optics Express, 2017, 25: 8926-8936.
[8] Dai L, Han X, Shao Y, et al. Hf4+ ion concentration dependence of holographic storage properties in Hf∶Fe ∶Cu∶LiNbO3 crystals[J]. Crystal Research and Technology, 2019, 54(2): 1800193.
[9] Yang Y, Buse K, Psaltis D, et al. Photorefractive recording in LiNbO3∶Mn[J]. Optics Letters, 2002, 27: 158-160.
[10] Pang G, Liu H, Hou P, et al. Optical phase conjugation of diffused light with infinite gain by using gated two-color photorefractive crystal LiNbO3∶Cu∶Ce[J]. Applied Optics, 2018, 57: 2675-2678.
[11] McMillen D K,Hudson T D, Wagner J, et al. Holographic recording in specially doped lithium niobate crystals[J]. Optics Express, 1998, 2: 491-502.
[12] Wang H, Zhang Y, Xiang D, et al. Growth and mechanical properties of near-stoichiometric LiNbO3 crystal[J]. Optik, 2018, 164: 385-389.
[13] Bhatt R, Bhaumik I, Ganesamoorthy S, et al. Study of structural defects and crystalline perfection of near stoichiometric LiNbO3 crystals grown from flux and prepared by VTE technique[J]. Journal of Molecular Structure, 2014, 1075: 377-383.
[15] Li L, Li Y, Zhao X. Doping stability of nonphotorefractive ions in stoichiometric and congruent LiNbO3[J]. Physical Chemistry Chemical Physics, 2018, 20: 17477-17486.
[18] Tian T, Kong Y, Liu S, et al. Photorefraction of molybdenum-doped lithium niobate crystals[J]. Optics Letters, 2012, 37(17): 2679-2681.
[19] Tian T, Kong Y, Liu S, et al. Fast UV-Vis Photorefractive response of Zr and Mg codoped LiNbO3∶Mo[J]. Optics Express, 2013, 21(9): 128-132.
[20] Zhu L, Zheng D, Saeed S, et al. Photorefractive properties of molybdenum and hafnium Co-Doped LiNbO3 crystals[J]. Crystals, 2018, 8(8): 322.
[21] Zhu L, Zheng D, Liu H, et al. Enhanced photorefractive properties of indium Co-Doped LiNbO3∶Mo crystals [J]. AIP Advances, 2018, 8: 095316.
[22] Xue L, Liu H, Zheng D, et al. The photorefractive response of Zn and Mo codoped LiNbO3 in the visible region[J]. Crystals, 2019, 9: 228.
[25] Li X, Kong Y, Liu H, et al. Origin of the generally defined absorption edge of non-stoichiometric lithium niobate crystals[J]. Solid State Communications, 2007, 141:113-116.
[26] Herth P, Granzow T, Schaniel D, et al. Evidence for light-induced hole polarons in LiNbO3[J]. Physical Review Letters, 2005, 95(6): 067404.
[27] Kong Y F, Deng J C, Zhang W L, et al. OH-absorption spectra in doped lithium niobate crystals[J]. Physics Letters A, 1994, 196(1-2): 128-132.
[28] Grim S O, Matienzo L J. X-Ray photoelectron spectroscopy of inorganic and organometallic compounds of molybdenum[J]. Inorganic Chemistry, 1975, 14(5):1014-1018.