• Frontiers of Optoelectronics
  • Vol. 8, Issue 2, 203 (2015)
Xiewei ZHONG1、2, Shenxia TAN1、2, Xiang WEN1、2, and Dan ZHU1、2、*
Author Affiliations
  • 1Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics,Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Ministry of Education (MoE) Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering,Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-015-0516-9 Cite this Article
    Xiewei ZHONG, Shenxia TAN, Xiang WEN, Dan ZHU. Effect of light beam on measurements of reflectance and transmittance of turbid media with integrating sphere: Monte Carlo simulation[J]. Frontiers of Optoelectronics, 2015, 8(2): 203 Copy Citation Text show less
    References

    [1] Noda H M, Motohka T, Murakami K, Muraoka H, Nasahara K N.Accurate measurement of optical properties of narrow leaves and conifer needles with a typical integrating sphere and spectroradiometer.Plant, Cell & Environment, 2013, 36(10): 1903–1909

    [2] van Staveren H J, Moes C J M, van Marie J, Prahl S A, van Gemert M J C. Light scattering in Intralipid-10% in the wavelength range of 400 – 1100 nm. Applied Optics, 1991, 30(31): 4507–4514

    [3] Aernouts B, Zamora-Rojas E, Van Beers R, Watté R, Wang L, TsutaM, Lammertyn J, Saeys W. Supercontinuum laser based optical characterization of Intralipid phantoms in the 500 – 2250 nm range. Optics Express, 2013, 21(26): 32450–32467

    [4] Zamora-Rojas E, Aernouts B, Garrido-Varo A, Saeys W, Perez-Marin D, Guerrero-Ginel J E. Optical properties of pig skin epidermis and dermis estimated with double integrating spheres measurements. Innovative Food Science & Emerging Technologies,2013, 20: 343–349

    [5] Zhong X, Wen X, Zhu D. Lookup-table-based inverse model for human skin reflectance spectroscopy: two-layered Monte Carlo simulations and experiments. Optics Express, 2014, 22(2): 1852–1864

    [6] Kim S, Jeong S. Effects of temperature-dependent optical properties on the fluence rate and temperature of biological tissue during low-level laser therapy. Lasers in Medical Science, 2014, 29(2): 637–644

    [7] V lisuo P, Kaartinen I, Tuchin V, Alander J. New closed-formapproximation for skin chromophore mapping. Journal of BiomedicalOptics, 2011, 16(4): 046012

    [8] Adams M T, Wang Q, Cleveland R O, Roy R A. Thermal dose dependent optical property changes of ex vivo chicken breast tissues between 500 and 1100 nm. Physics in Medicine and Biology, 2014,59(13): 3249–3260

    [9] Bashkatov A N, Genina E A, Kochubey V I, Gavrilova A A,Kapralov S V, Grishaev V A, Tuchin V V. Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm:prognosis for gastroenterology. Medical Laser Application, 2007, 22(2): 95–104

    [10] Bashkatov A N, Genina E A, Kochubey V I, Rubtsov V S,Kolesnikova E A, Tuchin V V. Optical properties of human colon tissues in the 350 – 2500 nm spectral range. Quantum Electronics,2014, 44(8): 779–784

    [11] Bosschaart N, Edelman G J, Aalders M C, van Leeuwen T G, Faber D J. A literature review and novel theoretical approach on the optical properties of whole blood. Lasers in Medical Science, 2014, 29(2):453–479

    [12] Grabtchak S, Montgomery L G, Whelan W M. Optical absorption and scattering properties of bulk porcine muscle phantoms from interstitial radiance measurements in 650-900 nm range. Physics in Medicine and Biology, 2014, 59(10): 2431–2444

    [13] Zamora-Rojas E, Aernouts B, Garrido-Varo A, Perez-Marin D,Guerrero-Ginel J, Saeys W. Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue. Innovative Food Science & Emerging Technologies, 2013,19(0): 218–226

    [14] Zhang L, Shi A, Lu H. Determination of optical coefficients of biological tissue from a single integrating-sphere. Journal of Modern Optics, 2012, 59(2): 121–125

    [15] Zhang Y, Chen Y, Yu Y, Xue X, Tuchin V V, Zhu D. Visible and near-infrared spectroscopy for distinguishing malignant tumor tissue from benign tumor and normal breast tissues in vitro. Journal of Biomedical Optics, 2013, 18(7): 077003

    [16] Zhu D, Lu W, Zeng S, Luo Q. Effect of light losses of sample between two integrating spheres on optical properties estimation.Journal of Biomedical Optics, 2007, 12(6): 064004

    [17] Pickering J W, Prahl S A, van Wieringen N, Beek J F, Sterenborg HJ C M, van Gemert M J C. Double-integrating-sphere system for measuring the optical properties of tissue. Applied Optics, 1993, 32(4): 399–410

    [18] Friebel M, Helfmann J, Meinke M C. Influence of osmolarity on the optical properties of human erythrocytes. Journal of Biomedical Optics, 2010, 15(5): 055005

    [19] Morawiec S, Mendes M J, Filonovich S A, Mateus T, Mirabella S,Aguas H, Ferreira I, Simone F, Fortunato E, Martins R, Priolo F,Crupi I. Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors. Optics Express, 2014, 22(S4 Suppl4): A1059–A1070

    [20] Bruns S, Rademacher D, Verg hl M, Weiss P. Properties of reactive sputtered alumina-silica mixtures. Applied Optics, 2014, 53(4):A334–A338

    [21] Cong A X, Hofmann M C, Cong W, Xu Y, Wang G. Monte Carlo fluorescence microtomography. Journal of Biomedical Optics, 2011,16(7): 070501

    [22] Wang L, Jacques S L, Zheng L. MCML—Monte Carlo modeling of light transport in multi-layered tissues. Computer Methods and Programs in Biomedicine, 1995, 47(2): 131–146

    [23] Wang L, Jacques S L, Zheng L. CONV—convolution for responses to a finite diameter photon beam incident on multi-layered tissues.Computer Methods and Programs in Biomedicine, 1997, 54(3):141–150

    [24] Vo-Dinh T. Biomedical Photonics Handbook. New York: CRC Press, 2003

    [25] Prahl S A, van Gemert M J C, Welch A J. Determining the optical properties of turbid mediaby using the adding-doubling method.Applied Optics, 1993, 32(4): 559–568

    Xiewei ZHONG, Shenxia TAN, Xiang WEN, Dan ZHU. Effect of light beam on measurements of reflectance and transmittance of turbid media with integrating sphere: Monte Carlo simulation[J]. Frontiers of Optoelectronics, 2015, 8(2): 203
    Download Citation