• Chinese Optics Letters
  • Vol. 22, Issue 11, 113701 (2024)
Xueqin Cao, Fan Wang, Leidong Xing, Zeyun Wang..., Yuanyuan Huang* and Xinlong Xu**|Show fewer author(s)
Author Affiliations
  • Shaanxi Joint Laboratory of Graphene, State Key Laboratory Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi’an 710069, China
  • show less
    DOI: 10.3788/COL202422.113701 Cite this Article Set citation alerts
    Xueqin Cao, Fan Wang, Leidong Xing, Zeyun Wang, Yuanyuan Huang, Xinlong Xu, "High-resolution temporal overlap with proper dispersion compensation for a coherent photocurrent experiment revealed by terahertz time-domain emission spectroscopy," Chin. Opt. Lett. 22, 113701 (2024) Copy Citation Text show less
    References

    [1] F. Carbone, O.-H. Kwon, A. H. Zewail. Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy. Science, 325, 181(2009).

    [2] O. F. Mohammed, O.-H. Kwon, C. M. Othon et al. Charge transfer assisted by collective hydrogen-bonding dynamics. Angew. Chem. Int. Ed., 48, 6251(2009).

    [3] J. Cho, T. Y. Hwang, A. H. Zewail. Visualization of carrier dynamics in p(n)-type GaAs by scanning ultrafast electron microscopy. Top. Curr. Chem., 111, 2094(2014).

    [4] H. Stark, J. Buldt, M. Müller et al. 23 mJ high-power fiber CPA system using electro-optically controlled divided-pulse amplification. Opt. Lett., 44, 5529(2019).

    [5] M. Müller, C. Aleshire, A. Klenke et al. 10.4 kW coherently combined ultrafast fiber laser. Opt. Lett., 45, 3083(2020).

    [6] Y.-H. Cha, Y. Kim, H. Park et al. 80-W dual-wavelength green pulsed laser based on a Yb-doped rod-type fiber amplifier. Appl. Phys. B Lasers Opt., 127, 78(2021).

    [7] U. Keller, R. Paschotta. Ultrafast Lasers(2021).

    [8] Y. He, Y. Chen, C. Lu et al. Coherent injection photocurrent in bismuth sulfide film induced by one-plus-two photon absorption quantum interference. Opt. Lett., 47, 1206(2022).

    [9] J. W. McIver, D. Hsieh, H. Steinberg et al. Control over topological insulator photocurrents with light polarization. Nat. Nanotechnol., 7, 96(2012).

    [10] Z. Yu, N. Zhang, J. Wang et al. 0.35% THz pulse conversion efficiency achieved by Ti:sapphire femtosecond laser filamentation in argon at 1 kHz repetition rate. Opto-Electron. Adv., 5, 210065(2022).

    [11] N. K. Berger, B. Levit, B. Fischer. Complete characterization of optical pulses using a chirped fiber Bragg grating. Opt. Commun., 251, 315(2005).

    [12] R. Zhang, X. Peng, Z. Jiao et al. Flexible high-resolution broadband sum-frequency generation vibrational spectroscopy for intrinsic spectral line widths. J. Chem. Phys., 150, 074702(2019).

    [13] Q.-J. Wang, R. Chen, J.-C. Zhao et al. Spectral attenuation of a 400-nm laser pulse propagating through a plasma filament induced by an intense femtosecond laser pulse. Chin. Phys. B, 29, 013301(2020).

    [14] M. Sauppe, D. Rompotis, B. Erk et al. XUV double-pulses with femtosecond to 650 ps separation from a multilayer-mirror-based split-and-delay unit at FLASH. J. Synchrotron Radiat., 25, 1517(2018).

    [15] Y. Zhao, X. Li, M. Xu et al. Dual-wavelength synchronously Q-switched solid-state laser with multi-layered graphene as saturable absorber. Opt. Express, 21, 3516(2013).

    [16] X. Q. Cao, Y. Y. Huang, Y. Y. Xi et al. Interfacial photoconductivity effect of type-I and type-II Sb2Se3/Si heterojunctions for THz wave modulation. Chin. Phys. B, 32, 116701(2023).

    [17] J. Zhang, Y. Yan, L. Liu et al. Terahertz spectroscopy of water in nonionic reverse micelles. Chin. Opt. Lett., 22, 013001(2024).

    [18] X. Cao, Y. Huang, Y. Xi et al. Interplay between ultrafast shift current and ultrafast photon drag current in tellurium nanotubes. ACS Photonics, 9, 3144(2022).

    [19] L. Zhu, Y. Huang, Z. Yao et al. Enhanced polarization-sensitive terahertz emission from vertically grown graphene by a dynamical photon drag effect. Nanoscale, 9, 10301(2017).

    [20] Y.-S. Lee. Basic Theories of Terahertz Interaction with Matter. Principles of Terahertz Science and Technology, 1(2009).

    [21] R. W. Boyd. Nonlinear Optics(2008).

    [22] A. Singh, J. Li, A. Pashkin et al. High-field THz pulses from a GaAs photoconductive emitter for non-linear THz studies. Opt. Express, 29, 19920(2021).

    [23] Y.-P. Yang, X.-L. Xu, W. Yan et al. Characteristics of THz emission from GaAs crystal excited by 400 nm and 800 nm optical pulses. Chin. Phys. Lett., 22, 2123(2005).

    [24] J. M. Schleicher, S. M. Harrel, C. A. Schmuttenmaer. Effect of spin-polarized electrons on terahertz emission from photoexcited GaAs. J. Appl. Phys., 105, 113116(2009).

    [25] M. N. Polyanskiy. Refractiveindex.info database of optical constants. Sci. Data, 11, 94(2024).

    [26] S. R. Uhlhorn, D. Borja, F. Manns et al. Refractive index measurement of the isolated crystalline lens using optical coherence tomography. Vis. Res., 48, 2732(2008).

    [27] K. Kato. Second-harmonic generation to 2048 Å in beta-BaB2O4. IEEE J. Quantum Electron., 22, 1013(1986).

    [28] D. N. Nikogosyan. Nonlinear Optical Crystals: A Complete Survey(2005).

    [29] Z. H. Lu, D. W. Zhang, Z. Y. Zhou et al. Coherently controlled terahertz source for a time domain spectroscopy system via injection current in bulk ZnSe. Appl. Opt., 51, 676(2012).

    [30] J. S. Totero Gongora, L. Peters, J. Tunesi et al. All-optical two-color terahertz emission from quasi-2D nonlinear surfaces. Phys. Rev. Lett., 125, 263901(2020).

    [31] L. Peters, J. S. Totero Gongora, V. Cecconi et al. Concurrent terahertz generation via quantum interference in a quadratic media. Adv. Opt. Mater., 11, 2202578(2023).

    [32] D. Sun, C. Divin, J. Rioux et al. Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference. Nano Lett., 10, 1293(2010).

    [33] D. A. Bas, K. Vargas-Velez, S. Babakiray et al. Coherent control of injection currents in high-quality films of Bi2Se3. Appl. Phys. Lett., 106, 041109(2015).

    [34] Y. He, Y. Chen, J. Zhao et al. Coherent terahertz radiation from indium tin oxide film via third-order optical nonlinearity. Appl. Phys. Lett., 122, 041106(2023).

    [35] Y. Lu, X. Zhang, Q. Xu et al. Two-color-driven controllable terahertz generation in ITO thin film. ACS Photonics, 11, 293(2024).

    [36] K. Y. Kim, J. H. Glownia, A. J. Taylor et al. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Opt. Express, 15, 4577(2007).

    [37] A. V. Balakin, A. V. Borodin, I. A. Kotelnikov et al. Terahertz emission from a femtosecond laser focus in a two-color scheme. J. Opt. Soc. Am. B, 27, 16(2010).

    Xueqin Cao, Fan Wang, Leidong Xing, Zeyun Wang, Yuanyuan Huang, Xinlong Xu, "High-resolution temporal overlap with proper dispersion compensation for a coherent photocurrent experiment revealed by terahertz time-domain emission spectroscopy," Chin. Opt. Lett. 22, 113701 (2024)
    Download Citation