
- High Power Laser Science and Engineering
- Vol. 4, Issue 4, 04000e42 (2016)
Abstract
Keywords
1 Introduction
The advent of laser pulses of ps or shorter duration and of very high power opened a basically new physics topic which includes relativistic effects[
In the near future, Petawatt or Exawatt–Zetawatt[
2 Description of the operation of the proposed new scheme for fusion
During the last few years there has been an increase interest to develop laboratory prototypes of compact magnetic fusion devices[
Sign up for High Power Laser Science and Engineering TOC. Get the latest issue of High Power Laser Science and Engineering delivered right to you!Sign up now
The proposed new fusion scheme is based on a compact magnetic fusion device which is divided in two parts with different plasma densities, plasma temperatures and different external applied magnetic field. Both magnetic configurations are in cylindrical symmetry and in mirror-like topology. The first part of the device has a relatively small volume (about
The second part of the proposed device is composed by a volume in cylindrical symmetry with a diameter of 45 cm and 45 cm in the axial direction, with mirror-like magnetic topology, capable of trapping a plasma with density of
3 Development of CF for conditions opened by laser induced ultrahigh ion densities
Up until now muon production is based on accelerators where a proton beam accelerates and collides with a solid target to produce pions that decay to positive and negative muons[
Use of muons as a catalyst in p–D fusion was first examined by Frank in 1947[
The numerical solution of a set of differential equations[
In the international bibliography there are proposals for high current, high efficient and high energy proton beams production by high-intensity laser pulse interaction with solid targets[
4 Numerical simulation describing the fusion process in the proposed device
We consider in the spark fusion part (first part) of the device a plasma mixture of D–T with density of
Similar numerical results are obtained with a plasma density of
As we explain in the previous paragraph the production of
5 Conclusions
In view of the basically new aspects of generation of ultrahigh space charge neutral relativistic ion densities[
References
[1] G. Mourou, T. Tajima, S. Bulanov. Rev. Mod. Phys., 78, 309(2006).
[2] T. Tajima, G. Mourou. Phys. Rev. ST Accel. Beams, 5(2002).
[4] H. Hora. Proc. SPIE, 8780(2013).
[5] R. Sauerbrey. Phys. Plasmas, 3, 4712(1996).
[6] H. Hora. Physics of Laser Driven Plasmas(1981).
[7] H. Hora. Laser Particle Beams, 27, 207(2009).
[9] S. Moustaizis, P. Lalousis, H. Hora. Proc. SPIE, 8780(2013).
[11] S. Eliezer, T. Tajima, M. N. Rosenbluth. Nuclear Fusion, 27, 527(1987).
[12] J. S. Cohen. Nucl. Instr. Meth. B, 42, 419(1989).
[13] J. S. Cohen. Nucl. Instr. Meth. Phys. Res. B, 42, 419(1989).
[15] H. Hora, H. W. Loeb. Zeitschrift für Flugwissenschaft und Weltraumforschung, 10, 393(1986).
[18] G. Mourou, B. Brocklesby, T. Tajima, J. Limpert. Nat. Photon., 7, 58(2013).
[19] F. Negoita, M. Roth, P. G. Thirolf, S. Tudisco, F. Hannachi, S. Moustaizis, I. Pomerantz, P. McKenna, J. Fuchs, K. Sphor, G. Acbas, A. Anzalone, P. Audebert, B. Tatulea, I. C. E. Turcu, M. Versteegen, D. Ursescu, S. Gales, N. V. Zamfir. Rom. Rep. Phys., 68, S37(2016).
[20] A. Bungau, R. Cywinski, C. Bungau, P. King, J. Lord. Phys. Rev. ST Accel. Beams, 16(2013).
[21] A. Bungau, R. Cywinski, J. Lord, P. King, C. Bungau. Physics Procedia, 30, 12(2012).
[22] A. Bungau, R. Cywinski, C. Bungau, P. King, J. Lord. Proceedings of IPAC’10, 259(2010).
[23] A. Ferrari, P. R. Sala, A. Fasso, J. Ranft.
[25] H. Azechi. J. Phys. Conf., 717(2015).
[30] C. Danson, D. Hillier, N. Hopps, D. Neely. High Power Laser Sci. Eng., 3, e3(2015).
[31] T. J. Mcguire.
[32] T. J. Mcguire.
[33] H. Hora.
[35] P. Lalousis, G. Throumoulopoulos, G. Poulipoulis. 43rd EPS Conference(2016).
[36] F. C. Frank. Nature, 160, 525(1947).
[38] A. D. Sakharov. Report of the Physics Institute(1948).
[39] A. D. Sakharov. Collected Scientific Works(1982).
[40] J. D. Jackson. Phys. Rev., 106, 330(1957).
[41] C. Petitjean. Fusion Engng Design, 11, 255(1989).
[42] S. Eliezer, Z. Henis. Fusion Technol., 26, 46(1994).
[43] T. Tajima, S. Eliezer, R. M. Kulsrud, S. E. Jones, J. Rafelski, H. J. Monkhorst. Proc. Muon Catalyzed Fusion, Sanibel Island, FL(1989).
[44] Yu. V. Petrov. Nature, 285, 466(1980).
[45] K. Nagamine. Introductory Muon Science(2003).
[46] K. Ishida, K. Nagamine, T. Matsuzaki. J. Phys. G: Nucl. Part. Phys., 29, 2043(2003).
[47] S. S. Gershtein, Yu. V. Petrov, I. Ponomarev, L. N. Somov, M. P. Faifman. Sov. Phys. JETP, 51, 1053(1980).
[50] C. D. Stodden, H. J. Monkhorst. Phys. Rev. A, 41, 1281(1990).
[51] C.-Y. Hu. Phys. Rev. A, 49, 4481(1994).
[52] A. Bungau, R. Cywinski, C. Bungau, P. King, J. Lord. Proceedings of IPAC’10, 250(2010).
[53] A. Bungau, R. Cywinski, C. Bungau, P. King, J. Lord. Proceedings of IPAC’10, 247(2010).
[54] W. Breunlich. Nucl. Phys. A, 508, 3c(1990).
[55] J. Rafelski, D. Harvey. Particle Accelerator, 37–38, 409(1992).
[56] M. R. Pahlavani, S. M. Motevalli. Acta Phys. Polonica B, 40, 2(2009).
[57] S. Eliezer, H. Hora, G. Korn, N. Nissin, J. M. Martinez Val. Phys. Plasmas, 23(2016).

Set citation alerts for the article
Please enter your email address