• Acta Geographica Sinica
  • Vol. 75, Issue 9, 1831 (2020)
Moyuan YANG1, Changming LIU2, Xingyao PAN1, and Kang LIANG2
Author Affiliations
  • 1Beijing Water Science and Technology Institute, Beijing 100048, China
  • 2Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • show less
    DOI: 10.11821/dlxb202009002 Cite this Article
    Moyuan YANG, Changming LIU, Xingyao PAN, Kang LIANG. Analysis of sponge city system and research points from the perspective of urban water cycle[J]. Acta Geographica Sinica, 2020, 75(9): 1831 Copy Citation Text show less
    References

    [1] WangWenliang, LiJunqi, CheWu, et al. Explanation of sponge city development technical guide: Planning index for urban total runoff volume capture. China Water & Wastewater, 2015,31(8):18-23. [ 王文亮, 李俊奇, 车伍, 等. 海绵城市建设指南解读之城市径流总量控制指标. 中国给水排水, 2015,31(8):18-23.] [王文亮, 李俊奇, 车伍, 等. 海绵城市建设指南解读之城市径流总量控制指标. 中国给水排水, 2015, 31(8): 18-23.]

    [2] LiJunqi, WangWenliang, CheWu, et al. Explanation of sponge city development technical guide: Regional division for total rainfall runoff volume capture target. China Water & Wastewater, 2015,31(8):6-12. [ 李俊奇, 王文亮, 车伍, 等. 海绵城市建设指南解读之降雨径流总量控制目标区域划分. 中国给水排水, 2015,31(8):6-12.] [李俊奇, 王文亮, 车伍, 等. 海绵城市建设指南解读之降雨径流总量控制目标区域划分. 中国给水排水, 2015, 31(8): 6-12.]

    [3] CheWu, ZhaoYang, LiJunqi, et al. Explanation of sponge city development technical guide: Basic concepts and comprehensive goals. China Water & Wastewater, 2015,31(8):1-5. [ 车伍, 赵杨, 李俊奇, 等. 海绵城市建设指南解读之基本概念与综合目标. 中国给水排水, 2015,31(8):1-5.] [车伍, 赵杨, 李俊奇, 等. 海绵城市建设指南解读之基本概念与综合目标. 中国给水排水, 2015, 31(8): 1-5.]

    [4] ZhangJianyun, WangYintang, HuQingfang, et al. Discussion and views on some issues of the sponage city construction in China. Advances in Water Science, 2016,27(6):793-799. [ 张建云, 王银堂, 胡庆芳, 等. 海绵城市建设有关问题讨论. 水科学进展, 2016,27(6):793-799.] [张建云, 王银堂, 胡庆芳, 等. 海绵城市建设有关问题讨论. 水科学进展, 2016, 27(6): 793-799.]

    [5] ZuoQiting. Water science issues in sponge city construction. Water Resources Protection, 2016,32(4):21-26. [ 左其亭. 我国海绵城市建设中的水科学难题. 水资源保护, 2016,32(4):21-26.] [左其亭. 我国海绵城市建设中的水科学难题. 水资源保护, 2016, 32(4): 21-26.]

    [6] WangHao, MeiChao, LiuJiahong. Systematic construction pattern of the sponge city. Journal of Hydraulic Engineering, 2017, 48(9):1009-1014+1022. [ 王浩, 梅超, 刘家宏. 海绵城市系统构建模式. 水利学报, 2017,48(9):1009-1014, 1022.] [王浩, 梅超, 刘家宏. 海绵城市系统构建模式. 水利学报, 2017, 48(9): 1009-1014, 1022.]

    [7] XiaJun, ShiWei, WangQiang, et al. Discussion of several hydrological issues regarding sponge city construction. Water Resources Protection, 2017,33(1):1-8. [ 夏军, 石卫, 王强, 等. 海绵城市建设中若干水文学问题的研讨. 水资源保护, 2017,33(1):1-8.] [夏军, 石卫, 王强, 等. 海绵城市建设中若干水文学问题的研讨. 水资源保护, 2017, 33(1): 1-8.]

    [8] Xia J, Zhang Y Y, Xiong L H et al. Opportunities and challenges of the sponge City construction related to urban water issues in China[J]. Science China Earth Sciences, 60, 652-658(2017).

    [9] LiuChangming, WangKaiwen. Discussions on the low impact development patterns and strategies of urban water ecological civilization construction. China Water Resources, 2016(19):1-4. [ 刘昌明, 王恺文. 城镇水生态文明建设低影响发展模式与对策探讨. 中国水利, 2016(19):1-4.] [刘昌明, 王恺文. 城镇水生态文明建设低影响发展模式与对策探讨. 中国水利, 2016(19): 1-4.]

    [10] LiuChangming, ZhangYongyong, WangZhonggen, et al. The LID pattern for maintaining virtuous water cycle in urbanized area: A preliminary study of planninary study of planning and techniques for sponge city. Journal of Natural Resources, 2016,31(5):719-731. [ 刘昌明, 张永勇, 王中根, 等. 维护良性水循环的城镇化LID模式: 海绵城市规划方法与技术初步探讨. 自然资源学报, 2016,31(5):719-731.] [刘昌明, 张永勇, 王中根, 等. 维护良性水循环的城镇化LID模式: 海绵城市规划方法与技术初步探讨. 自然资源学报, 2016, 31(5): 719-731.]

    [11] XuZongxue, ChengTao. Basic theory for urban water management and sponge city: Review on urban hydrology. Journal of Hydraulic Engineering, 2019,50(1):53-61. [ 徐宗学, 程涛. 城市水管理与海绵城市建设之理论基础: 城市水文学研究进展. 水利学报, 2019,50(1):53-61.] [徐宗学, 程涛. 城市水管理与海绵城市建设之理论基础: 城市水文学研究进展. 水利学报, 2019, 50(1): 53-61.]

    [12] LiuWeidong, YouHuanling, RenGuoyu, et al. AWS preciptation characteristics based on k-means clustering method in Beijing area. Meteorological Monthly, 2014,40(7):844-851. [ 刘伟东, 尤焕苓, 任国玉, 等. 北京地区自动站降水特征的聚类分析. 气象, 2014,40(7):844-851.] [刘伟东, 尤焕苓, 任国玉, 等. 北京地区自动站降水特征的聚类分析. 气象, 2014, 40(7): 844-851.]

    [13] XuGuanglai, XuYoupeng, XuHongliang. Advance in hydrologic process response to urbanization. Journal of Natural Resources, 2010,25(12):2171-2178.

    [14] ZhouChangyan, CenSixuan, LiYueqing, et al. Precipitation variation and its impacts in sichuan in the last 50 years. Acta Geographica Sinica, 2011,66(5):619-630.

    [15] ZhangJianyun, WangYintang, HeRuimin, et al. Discussion on the urban flood and waterlogging and causes analysis in China. Advances in Water Science, 2016,27(4):485-491. [ 张建云, 王银堂, 贺瑞敏, 等. 中国城市洪涝问题及成因分析. 水科学进展, 2016,27(4):485-491.] [张建云, 王银堂, 贺瑞敏, 等. 中国城市洪涝问题及成因分析. 水科学进展, 2016, 27(4): 485-491.]

    [16] De Vos L, Leijnse H, Overeem A et al. The potential of urban rainfall monitoring with crowdsourced automatic weather stations in Amsterdam[J]. Hydrology and Earth System Sciences, 21, 765-777(2017).

    [17] SunYanwei, WangWenchuan, WeiXiaomei, et al. Eco-hydrological impacts of urbanization. Advances in Water Science, 2012,23(4):569-574.

    [18] SangYanfang, WangZhonggen, LiuChangming. Applications of wavelet analysis to hydrology: Status and prospects. Progress in Geography, 2013,32(9):1413-1422. [ 桑燕芳, 王中根, 刘昌明. 小波分析方法在水文学研究中的应用现状及展望. 地理科学进展, 2013,32(9):1413-1422.] [桑燕芳, 王中根, 刘昌明. 小波分析方法在水文学研究中的应用现状及展望. 地理科学进展, 2013, 32(9): 1413-1422.]

    [19] Bi E G, Gachon P, Vrac M et al. Which downscaled rainfall data for climate change impact studies in urban areas? Review of current approaches and trends[J]. Theoretical and Applied Climatology, 127, 685-699(2017).

    [20] Willems P, Arnbjerg-Nielsen K, Olsson J et al. Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings[J]. Atmospheric Research, 103, 106-118(2012).

    [21] Miller J D, Hutchins M. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom[J]. Journal of Hydrology: Regional Studies, 12, 345-362(2017).

    [22] YangMoyuan, PanXingyao, LiuHonglu, et al. Accurate calculation of the volume capture ratio of annual rainfall considering the field rainfall evolution. Journal of Hydraulic Engineering, 2019,50(12):1510-1517, 1528. [ 杨默远, 潘兴瑶, 刘洪禄, 等. 考虑场次降雨年际变化特征的年径流总量控制率准确核算. 水利学报, 2019,50(12):1510-1517, 1528.] [杨默远, 潘兴瑶, 刘洪禄, 等. 考虑场次降雨年际变化特征的年径流总量控制率准确核算. 水利学报, 2019, 50(12): 1510-1517, 1528.]

    [23] Yang Y Y, Toor G S. Sources and mechanisms of nitrate and orthophosphate transport in urban stormwater runoff from residential catchments[J]. Water Research, 112, 176-184(2017).

    [24] QiuFuguo, ChenLixia. Research progress on contaminants removal from stormwater runoff by bioretention. Chinese Journal of Environmental Engineering, 2016,10(4):1593-1602. [ 仇付国, 陈丽霞. 雨水生物滞留系统控制径流污染物研究进展. 环境工程学报, 2016,10(4):1593-1602.] [仇付国, 陈丽霞. 雨水生物滞留系统控制径流污染物研究进展. 环境工程学报, 2016, 10(4): 1593-1602.]

    [25] GeDe, ZhangShouhong. Impacts of vegetation on hydrological performances of green roofs under different rainfall conditions. Environmental Science, 2018,39(11):5015-5023.

    [26] GuoPingting, WangJianlong, YangLiqiong, et al. Effect of bioretention media on pollutions removal from stormwater runoff. Environmental Science & Technology, 2016,39(3):60-67. [ 郭娉婷, 王建龙, 杨丽琼, 等. 生物滞留介质类型对径流雨水净化效果的影响. 环境科学与技术, 2016,39(3):60-67.] [郭娉婷, 王建龙, 杨丽琼, 等. 生物滞留介质类型对径流雨水净化效果的影响. 环境科学与技术, 2016, 39(3): 60-67.]

    [27] LiJiake, LiuZengchao, HuangNingjun, et al. Advance in the study on bioretention technology for low-impact development. Arid Zone Research, 2014,31(3):431-439. [ 李家科, 刘增超, 黄宁俊, 等. 低影响开发(LID)生物滞留技术研究进展. 干旱区研究, 2014,31(3):431-439.] [李家科, 刘增超, 黄宁俊, 等. 低影响开发(LID)生物滞留技术研究进展. 干旱区研究, 2014, 31(3): 431-439.]

    [28] MengYingying, WangHuixiao, ZhangShuhan, et al. Experiments on detention, retention and purifying effects of urban road runoff based on bioretention. Journal of Beijing Normal University (Natural Science), 2013,49(2/3):286-291. [ 孟莹莹, 王会肖, 张书函, 等. 基于生物滞留的城市道路雨水滞蓄净化效果试验研究. 北京师范大学学报(自然科学版), 2013,49(2/3):286-291.] [孟莹莹, 王会肖, 张书函, 等. 基于生物滞留的城市道路雨水滞蓄净化效果试验研究. 北京师范大学学报(自然科学版), 2013, 49(2/3): 286-291.]

    [29] WangShumin, LiXingyang, ZhangJunhua, et al. Influence of green roof application on water quantity and quality in urban region. Chinese Journal of Applied Ecology, 2014,25(7):2026-2032.

    [30] HouPeiqiang, WangXiaoke, ZhengFeixiang, et al. Research status of the characteristics of non-point source pollution in China. Water & Wastewater Engineering, 2009,35(S1):188-193. [ 侯培强, 王效科, 郑飞翔, 等. 我国城市面源污染特征的研究现状. 给水排水, 2009,35(增刊1):188-193.] [侯培强, 王效科, 郑飞翔, 等. 我国城市面源污染特征的研究现状. 给水排水, 2009, 35(增刊1): 188-193.]

    [31] ZhangQianqian, LiXiangquan, WangXiaoke, et al. Research advance in the characterization and source apportionment of pollutants in urban roadway runoff. Ecology and Environmental Sciences, 2014,23(2):352-358. [ 张千千, 李向全, 王效科, 等. 城市路面降雨径流污染特征及源解析的研究进展. 生态环境学报, 2014,23(2):352-358.] [张千千, 李向全, 王效科, 等. 城市路面降雨径流污染特征及源解析的研究进展. 生态环境学报, 2014, 23(2): 352-358.]

    [32] ZhangZhibin, MengQingyu, MaZheng. Study on pollution characteristics of urban non-point source pollution. Water & Wastewater Engineering, 2016,52(S1):163-167. [ 张志彬, 孟庆宇, 马征. 城市面源污染的污染特征研究. 给水排水, 2016,52(增刊1):163-167.] [张志彬, 孟庆宇, 马征. 城市面源污染的污染特征研究. 给水排水, 2016, 52(增刊1): 163-167.]

    [33] LiuChangming, WangZhonggen, YangShengtian, et al. Hydro-informatic modeling system: Aiming at water cycle in land surface material and energy exchange processes. Acta Geographica Sinica, 2014,69(5):579-587.

    [34] GuoHuimin, FanGuisheng. Relation between soil structure and the relative stable infiltration rate under the condition of surface water pressure infiltration. Journal of Irrigation and Drainage, 2009,28(6):104-106. [ 郭会敏, 樊贵盛. 有压入渗条件下土壤结构与相对稳定入渗率间的关系研究. 灌溉排水学报, 2009,28(6):104-106.] [郭会敏, 樊贵盛. 有压入渗条件下土壤结构与相对稳定入渗率间的关系研究. 灌溉排水学报, 2009, 28(6): 104-106.]

    [35] LiHongxing, FanGuisheng. Experimental study on main factors influencing the infiltration capacity of unsaturated earth canal. Journal of Hydraulic Engineering, 2009,40(5):630-634. [ 李红星, 樊贵盛. 影响非饱和土渠床入渗能力主导因素的试验研究. 水利学报, 2009,40(5):630-634.] [李红星, 樊贵盛. 影响非饱和土渠床入渗能力主导因素的试验研究. 水利学报, 2009, 40(5): 630-634.]

    [36] LiHongxing, FanGuisheng. The quantitative relation of stable infiltration rates between the pressured and non-pressured water infiltration in unsaturated soils. Journal of Irrigation and Drainage, 2010,29(2):17-21. [ 李红星, 樊贵盛. 非饱和土壤有压和无压入渗稳定入渗率间的关系研究. 灌溉排水学报, 2010,29(2):17-21.] [李红星, 樊贵盛. 非饱和土壤有压和无压入渗稳定入渗率间的关系研究. 灌溉排水学报, 2010, 29(2): 17-21.]

    [37] Chen L, Xiang L, Young M H et al. Optimal parameters for the Green-Ampt infiltration model under rainfall conditions[J]. Journal of Hydrology and Hydromechanics, 63, 93-101(2015).

    [38] WangQuanjiu, ShaoMing'an, WangZhirong, et al. Application of green ampt equation during infiltration in layered soil. Journal of Soil Erosion and Soil and Water Conservation, 1999,5(4):66-70. [ 王全九, 邵明安, 汪志荣, 等. Green-Ampt公式在层状土入渗模拟计算中的应用. 土壤侵蚀与水土保持学报, 1999,5(4):66-70.] [王全九, 邵明安, 汪志荣, 等. Green-Ampt公式在层状土入渗模拟计算中的应用. 土壤侵蚀与水土保持学报, 1999, 5(4): 66-70.]

    [39] Chu X, Mariño M A. Determination of ponding condition and infiltration into layered soils under unsteady rainfall[J]. Journal of Hydrology, 313, 195-207(2005).

    [40] Mohammadzadeh-Habili J, Heidarpour M. Application of the green-ampt model for infiltration into layered soils[J]. Journal of Hydrology, 527, 824-832(2015).

    [41] Gohardoust M R, Sadeghi M, Ahmadi M Z et al. Hydraulic conductivity of stratified unsaturated soils: Effects of random variability and layering[J]. Journal of hydrology, 546, 81-89(2017).

    [42] XiongDinghui, LiuSuxia, MoXingguo. Numerical difference in soil water between vertically stratified and homogenized soil profiles. Chinese Journal of Eco-Agriculture, 2018,26(4):593-603. [ 熊丁晖, 刘苏峡, 莫兴国. 土壤垂向分层和均匀处理下水分差异的数值探讨. 中国生态农业学报, 2018,26(4):593-603.] [熊丁晖, 刘苏峡, 莫兴国. 土壤垂向分层和均匀处理下水分差异的数值探讨. 中国生态农业学报, 2018, 26(4): 593-603.]

    [43] YangMoyuan, ZhangShuhan, PanXingyao. Monitoring and evaluation of green roof runoff reduction effect. China Water & Wastewater, 2019,35(15):134-138. [ 杨默远, 张书函, 潘兴瑶. 绿色屋顶径流减控效果的监测分析. 中国给水排水, 2019,35(15):134-138.] [杨默远, 张书函, 潘兴瑶. 绿色屋顶径流减控效果的监测分析. 中国给水排水, 2019, 35(15): 134-138.]

    [44] WangQian, ZhangQionghua, WangXiaochang. Cumulative characteristics of runoff pollutants in typical domestic cities. China Environmental Science, 2015,35(6):1719-1725. [ 王倩, 张琼华, 王晓昌. 国内典型城市降雨径流初期累积特征分析. 中国环境科学, 2015,35(6):1719-1725.] [王倩, 张琼华, 王晓昌. 国内典型城市降雨径流初期累积特征分析. 中国环境科学, 2015, 35(6): 1719-1725.]

    [45] ZhangWenting, WangMingze, SongDanyang, et al. Study on spatial distribution of non-point source pollution in the process of rainfall runoff. Environmental Science & Technology, 2015,38(10):153-160. [ 张文婷, 王铭泽, 宋丹阳, 等. 降雨径流过程的非点源污染时空动态分布研究. 环境科学与技术, 2015,38(10):153-160.] [张文婷, 王铭泽, 宋丹阳, 等. 降雨径流过程的非点源污染时空动态分布研究. 环境科学与技术, 2015, 38(10): 153-160.]

    [46] Johnson J P, Hunt W F. A retrospective comparison of water quality treatment in a bioretention cell 16 years following initial analysis[J]. Sustainability, 11, 1945(2019). https://www.mdpi.com/2071-1050/11/7/1945

    [47] Cording A, Hurley S, Whitney D. Monitoring methods and designs for evaluating bioretention performance[J]. Journal of Environmental Engineering, 143, 05017006(2017). http://ascelibrary.org/doi/10.1061/%28ASCE%29EE.1943-7870.0001276

    [48] GaoFeng, LinHuanhuan, DengHongwei. Numerical simulation of contaminant transport in heterogeneous aquifer under heavy rainfall. Environmental Science & Technology, 2017,40(11):59-66. [ 高峰, 蔺欢欢, 邓红卫. 强降雨条件下非均匀介质污染物运移数值模拟. 环境科学与技术, 2017,40(11):59-66.] [高峰, 蔺欢欢, 邓红卫. 强降雨条件下非均匀介质污染物运移数值模拟. 环境科学与技术, 2017, 40(11): 59-66.]

    [49] HuWeixian, HeWenhua, HuangGuoru, et al. Review of urban storm water simulation techniques. Advances in Water Science, 2010,21(1):137-144.

    [50] WangTong, DingXiang, CaiTian, et al. Influence of routing methods on outflow of SWMM model. China Water & Wastewater, 2018,34(15):133-138. [ 王彤, 丁祥, 蔡甜, 等. 水力演算方法对SWMM模型排放口出流的影响. 中国给水排水, 2018,34(15):133-138.] [王彤, 丁祥, 蔡甜, 等. 水力演算方法对SWMM模型排放口出流的影响. 中国给水排水, 2018, 34(15): 133-138.]

    [51] FuBowen, JinPengkang, ShiShan, et al. Sediment characteristics of sewer network in Xi'an city. China Water & Wastewater, 2018,34(17):119-122, 127. [ 付博文, 金鹏康, 石山, 等. 西安市污水管网中沉积物特性研究. 中国给水排水, 2018,34(17):119-122, 127.] [付博文, 金鹏康, 石山, 等. 西安市污水管网中沉积物特性研究. 中国给水排水, 2018, 34(17): 119-122, 127.]

    [52] GanLili. A study on urban rainwater runoff pollution control and quantitative sewer pipe defect assessment[D]. Beijing: Tsinghua University, 2012. [ 干里里. 城市雨水径流污染控制与排水管道缺损状况量化评价研究[D]. 北京: 清华大学, 2012.] [干里里. 城市雨水径流污染控制与排水管道缺损状况量化评价研究[D]. 北京: 清华大学, 2012.]

    [53] WangRui, LiZhi, LiuYufei, et al. Study on reformation and optimization of urban drainage system based on SWMM. Water Resources and Hydropower Engineering, 2018,49(1):60-69. [ 王芮, 李智, 刘玉菲, 等. 基于SWMM的城市排水系统改造优化研究. 水利水电技术, 2018,49(1):60-69.] [王芮, 李智, 刘玉菲, 等. 基于SWMM的城市排水系统改造优化研究. 水利水电技术, 2018, 49(1): 60-69.]

    [54] DongLuyan, ZhaoDongquan, LiuXiaomei, et al. Performance assessment system for drainage systems based on monitoring and modeling technology. China Water & Wastewater, 2014,30(17):150-154. [ 董鲁燕, 赵冬泉, 刘小梅, 等. 基于监测和模拟技术的排水管网性能评估体系. 中国给水排水, 2014,30(17):150-154.] [董鲁燕, 赵冬泉, 刘小梅, 等. 基于监测和模拟技术的排水管网性能评估体系. 中国给水排水, 2014, 30(17): 150-154.]

    [55] GuoXiaochen, LiMeng, ShiXiaoyu, et al. Research and application of warning technology for drainage network accidents based on on-line monitoring. China Water & Wastewater, 2018,34(19):129-133. [ 郭效琛, 李萌, 史晓雨, 等. 基于在线监测的排水管网事故预警技术研究与应用. 中国给水排水, 2018,34(19):129-133.] [郭效琛, 李萌, 史晓雨, 等. 基于在线监测的排水管网事故预警技术研究与应用. 中国给水排水, 2018, 34(19): 129-133.]

    [56] ZhouYunfeng. Sensitive parameters identification and multi-objective optimization calibration of SWMM drainage pipe network model[D]. Hangzhou: Zhejiang University, 2018. [ 周云峰. SWMM排水管网模型灵敏参数识别与多目标优化率定研究[D]. 杭州: 浙江大学, 2018.] [周云峰. SWMM排水管网模型灵敏参数识别与多目标优化率定研究[D]. 杭州: 浙江大学, 2018.]

    [57] LvHeng, NiGuangheng, TianFuqiang. Impacts of drainage pipe network complexity on urban stormwater modeling. Journal of Hydroelectric Engineering, 2018,37(11):97-106. [ 吕恒, 倪广恒, 田富强. 排水管网结构概化对城市暴雨洪水模拟的影响. 水力发电学报, 2018,37(11):97-106.] [吕恒, 倪广恒, 田富强. 排水管网结构概化对城市暴雨洪水模拟的影响. 水力发电学报, 2018, 37(11): 97-106.]

    [58] WangJiabiao, ZhaoJianshi, ShenZiyin, et al. Discussion about the two rainfall control approaches in sponge city construction. Journal of Hydraulic Engineering, 2017,48(12):1490-1498. [ 王家彪, 赵建世, 沈子寅, 等. 关于海绵城市两种降雨控制模式的讨论. 水利学报, 2017,48(12):1490-1498.] [王家彪, 赵建世, 沈子寅, 等. 关于海绵城市两种降雨控制模式的讨论. 水利学报, 2017, 48(12): 1490-1498.]

    [59] LiJunqi, LinXiang. The influence of extreme rainfall events on the total runoff control rate and the 24h rainfall field control rate was analyzed. Water & Wastewater Engineering, 2018,44(1):21-26. [ 李俊奇, 林翔. 极端降雨事件对雨水年径流总量控制率和24 h降雨场次控制率的影响规律探析. 给水排水, 2018,44(1):21-26.] [李俊奇, 林翔. 极端降雨事件对雨水年径流总量控制率和24 h降雨场次控制率的影响规律探析. 给水排水, 2018, 44(1): 21-26.]

    [60] ZhangYuhang, YangMoyuan, PanXingyao, et al. Influence of rainfall division method on capture ratio of rainfall. China Water &Wastewater, 2019,35(13):122-127. [ 张宇航, 杨默远, 潘兴瑶, 等. 降雨场次划分方法对降雨控制率的影响分析. 中国给水排水, 2019,35(13):122-127.] [张宇航, 杨默远, 潘兴瑶, 等. 降雨场次划分方法对降雨控制率的影响分析. 中国给水排水, 2019, 35(13): 122-127.]

    [61] Jiang Y, Zevenbergen C, Ma Y. Urban pluvial flooding and stormwater management: A contemporary review of China's challenges and "sponge cities" strategy[J]. Environmental Science & Policy, 80, 132-143(2018).

    [62] Liu J, Shao W, Xiang C et al. Uncertainties of urban flood modeling: Influence of parameters for different underlying surfaces[J]. Environmental Research, 182, 108929(2020). https://www.ncbi.nlm.nih.gov/pubmed/31855699

    [63] Mei C, Liu J, Wang H et al. Integrated assessments of green infrastructure for flood mitigation to support robust decision-making for sponge city construction in an urbanized watershed[J]. Science of the Total Environment, 639, 1394-1407(2018).

    [64] WangWenliang, WangErsong, JiaNan, et al. Discussion on design method of overflow storage capacity and treatment facility scale of combined sewer system based on model simulation. Water & Wastewater Engineering, 2018,54(10):31-34. [ 王文亮, 王二松, 贾楠, 等. 基于模型模拟的合流制溢流调蓄与处理设施规模设计方法探讨. 给水排水, 2018,54(10):31-34.] [王文亮, 王二松, 贾楠, 等. 基于模型模拟的合流制溢流调蓄与处理设施规模设计方法探讨. 给水排水, 2018, 54(10): 31-34.]

    [65] ZhaoZekun, CheWu, ZhaoYang, et al. Summary comparison of combined sewer overflow control between China and the United States. Water & Wastewater Engineering, 2018,54(11):128-134. [ 赵泽坤, 车伍, 赵杨, 等. 中美合流制溢流污染控制概要比较. 给水排水, 2018,54(11):128-134.] [赵泽坤, 车伍, 赵杨, 等. 中美合流制溢流污染控制概要比较. 给水排水, 2018, 54(11): 128-134.]

    [66] ZhaoZekun, CheWu, ZhaoYang, et al. Experiences of combination of gray-green infrastructure for combined sewer overflow control in the United States. China Water & Wastewater, 2018,34(20):36-41. [ 赵泽坤, 车伍, 赵杨, 等. 美国合流制溢流污染控制灰绿设施结合的经验. 中国给水排水, 2018,34(20):36-41.] [赵泽坤, 车伍, 赵杨, 等. 美国合流制溢流污染控制灰绿设施结合的经验. 中国给水排水, 2018, 34(20): 36-41.]

    [67] Taghipour M, Tolouei S, Autixier L et al. Normalized dynamic behavior of combined sewer overflow discharges for source water characterization and management[J]. Journal of Environmental Management, 249, 109386(2019). https://www.ncbi.nlm.nih.gov/pubmed/31421478

    [68] Mailhot A, Talbot G, Lavallée B. Relationships between rainfall and Combined Sewer Overflow (CSO) occurrences[J]. Journal of Hydrology, 523, 602-609(2015).

    [69] Vivoni E R, Moreno H A, Mascaro G et al. Observed relation between evapotranspiration and soil moisture in the North American monsoon region[J]. Geophysical Research Letters, 35, 659-662(2008).

    [70] Wadzuk B M, Hickman J M, Traver R G. Understanding the role of evapotranspiration in bioretention: Mesocosm study[J]. Journal of Sustainable Water in the Built Environment, 1, 04014002(2015).

    [71] Brown R A, Borst M. Quantifying evaporation in a permeable pavement system[J]. Hydrological Processes, 29, 2100-2111(2015).

    [72] XiaoRongbo, OuyangZhiyun, LiWeifeng, et al. A review of the eco-environmental consequences of urban heat islands. Acta Ecologica Sinica, 2005,25(8):2055-2060. [ 肖荣波, 欧阳志云, 李伟峰, 等. 城市热岛的生态环境效应. 生态学报, 2005,25(8):2055-2060.] [肖荣波, 欧阳志云, 李伟峰, 等. 城市热岛的生态环境效应. 生态学报, 2005, 25(8): 2055-2060.]

    [73] Mao X, Jia H, Shaw L Y. Assessing the ecological benefits of aggregate LID-BMPs through modelling[J]. Ecological Modelling, 353, 139-149(2017).

    [74] LiDingqiang, LiuJiahua, YuanZaijian, et al. Research advance and prospects on low impact development control measures for urban non-point source pollution. Ecology and Environmental Sciences, 2019,28(10):2110-2118. [ 李定强, 刘嘉华, 袁再健, 等. 城市低影响开发面源污染治理措施研究进展与展望. 生态环境学报, 2019,28(10):2110-2118.] [李定强, 刘嘉华, 袁再健, 等. 城市低影响开发面源污染治理措施研究进展与展望. 生态环境学报, 2019, 28(10): 2110-2118.]

    [75] ZhaoYinbing, CaiTingting, SunRanhao, et al. Review on sponge city research: From hydrological process to ecological restoration. Acta Ecologica Sinica, 2019,39(13):4638-4646. [ 赵银兵, 蔡婷婷, 孙然好, 等. 海绵城市研究进展综述: 从水文过程到生态恢复. 生态学报, 2019,39(13):4638-4646.] [赵银兵, 蔡婷婷, 孙然好, 等. 海绵城市研究进展综述: 从水文过程到生态恢复. 生态学报, 2019, 39(13): 4638-4646.]

    [76] HuQingfang, WangYintang, LiLingjie, et al. Preliminary comparison between water-ecological civilization city and sponge city. Water Resources Protection, 2017,33(5):13-18. [ 胡庆芳, 王银堂, 李伶杰, 等. 水生态文明城市与海绵城市的初步比较. 水资源保护, 2017,33(5):13-18.] [胡庆芳, 王银堂, 李伶杰, 等. 水生态文明城市与海绵城市的初步比较. 水资源保护, 2017, 33(5): 13-18.]

    [77] LiLan, LiFeng. The key scientific issues and thinking on the construction of "Sponge City". Acta Ecologica Sinica, 2018,38(7):2599-2606. [ 李兰, 李锋. “海绵城市”建设的关键科学问题与思考. 生态学报, 2018,38(7):2599-2606.] [李兰, 李锋. “海绵城市”建设的关键科学问题与思考. 生态学报, 2018, 38(7): 2599-2606.]

    [78] TengYanguo, ZuoRui, SuXiaosi, et al. Technique for assessing environmental risk of regional groundwater. Research of Environmental Sciences, 2014,27(12):1532-1539. [ 滕彦国, 左锐, 苏小四, 等. 区域地下水环境风险评价技术方法. 环境科学研究, 2014,27(12):1532-1539.] [滕彦国, 左锐, 苏小四, 等. 区域地下水环境风险评价技术方法. 环境科学研究, 2014, 27(12): 1532-1539.]

    [79] WangXingchao. Application of underground reservoirs in construction of sponge cities. Advances in Science and Technology of Water Resources, 2018,38(1):83-87. [ 王兴超. 地下水库在海绵城市建设中的应用. 水利水电科技进展, 2018,38(1):83-87.] [王兴超. 地下水库在海绵城市建设中的应用. 水利水电科技进展, 2018, 38(1): 83-87.]

    [80] ZhouDong. Interrelationship analysis of formation properties and water storage and drainage function in construction of sponge city[D]. Beijing: University of Science and Technology Beijing, 2017. [ 周栋. 海绵城市建设中地层特性与蓄排水功能的相互关系研究[D]. 北京: 北京科技大学, 2017.] [周栋. 海绵城市建设中地层特性与蓄排水功能的相互关系研究[D]. 北京: 北京科技大学, 2017.]

    Moyuan YANG, Changming LIU, Xingyao PAN, Kang LIANG. Analysis of sponge city system and research points from the perspective of urban water cycle[J]. Acta Geographica Sinica, 2020, 75(9): 1831
    Download Citation