• Optoelectronics Letters
  • Vol. 17, Issue 11, 646 (2021)
Lei CHEN, Liang ZHANG, Xiaofang XU, and Liu Lü*
Author Affiliations
  • School of Mechanic Engineering, Jiangsu University, Zhenjiang 212013, China
  • show less
    DOI: 10.1007/s11801-021-1025-2 Cite this Article
    CHEN Lei, ZHANG Liang, XU Xiaofang, Lü Liu. Tuning of the graphene surface plasmon by the monolayer MoS2[J]. Optoelectronics Letters, 2021, 17(11): 646 Copy Citation Text show less
    References

    [1] CHEN J, BADIOLI M, ALONSO-GONZALEZ P, et al. Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature, 2012, 487(7405):77-81.

    [2] FAN Y C, SHEN N H, ZHANG F L, et al. Graphene plasmonics : a platform for 2D optics[J]. Advanced optical materials, 2019, 7(13):1800537.

    [3] YANG X G, LI B J. Monolayer MoS2 for nanoscale photonics[J]. Nanophotonics, 2020, 9(7):1557-1577.

    [4] WANG Y, JIN Y H, LI S B, et al. Flower-like MoS2 supported on three-dimensional graphene aerogels as high-performance anode materials for sodium-ion batteries[ J]. Ionics, 2018, 24(11):3431-3437.

    [5] ZHANG W J, CHUU C P, HUANG J K, et al. Ultrahigh- gain photodetectors based on atomically thin graphene- MoS2 heterostructures[J]. Scientific reports, 2014, 4(1):03826.

    [6] XU H, HAN X Y, DAI X, et al. High detectivity and transparent few-layer MoS2/glassy-graphene heterostructure photodetectors[J]. Advanced materials, 2018, 30(13):1706561.

    [7] LI H, WU J B, RAN F R, et al. Interfacial interactions in van der waals heterostructures of MoS2 and graphene[J]. ACS nano, 2017, 11(11):11714-11723.

    [8] LI Y, XU C Y, QIN J K, et al. Tuning the excitonic states in MoS2/graphene van der waals heterostructures via electrochemical gating[J]. Advanced functional materials, 2016, 26(2):293-302.

    [9] ZENG S W, HU S Y, XIA J, et al. Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors[J]. Sensors and actuators B: chemical, 2015, 207:801-810.

    [10] ROY K, PADMANABHAN M, GOSWAMI S, et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices[J]. Nature nanotech nology, 2013, 8(11):826-830.

    [11] LOAN P T K, ZHANG W J, LIN C T, et al. Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridisation[J]. Advanced materials, 2014, 26(28):4838-4844.

    [12] WANG B B, ZHANG Y, ZHANG J, et al. Facile synthesis of a MoS2 and functionalized graphene heterostructure for enhanced lithium-storage performance [J]. ACS appllied materials & interfaces, 2017, 9(15): 12907-12913.

    [13] PRUCHA E J, PALIK E D. Handbook of optical constants of solids[M]. New York:Academic Press, 1998.

    [14] HSU C W, FRISENDA R, SCHMIDT R, et al. Thickness‐dependent refractive index of 1L, 2L, and 3L MoS2, MoSe2, WS2, and WSe2[J]. Advanced optical materials, 2019, 7(13):1900239.

    [15] OKANO S, SHARMA A, ORTMANN F, et al. Voltage- controlled dielectric function of bilayer graphene[J]. Advanced optical materials, 2020, 8(20):2000861.

    [16] YAO W, TANG L L, WANG J, et al. Spectrally and spatially tunable terahertz metasurface lens based on graphene surface plasmons[J]. IEEE photonics journal, 2018, 10(4):1-8.

    [17] CHU H S, GAN C. Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays[J]. Applied physics letters, 2013, 102(23):231107.

    CHEN Lei, ZHANG Liang, XU Xiaofang, Lü Liu. Tuning of the graphene surface plasmon by the monolayer MoS2[J]. Optoelectronics Letters, 2021, 17(11): 646
    Download Citation