• Chinese Journal of Lasers
  • Vol. 47, Issue 3, 302008 (2020)
Yuan Jingguang1, Li Yu1, Liu Jingnan1, Chen Congyan1、*, Pang Enlin2, Tan Shujie2, and Jin Yaming2
Author Affiliations
  • 1School of Automation, Southeast University, Nanjing, Jiangsu 210096, China
  • 2Profeta Intelligent Technology Co., Ltd., Nanjing, Jiangsu 211111, China
  • show less
    DOI: 10.3788/CJL202047.0302008 Cite this Article Set citation alerts
    Yuan Jingguang, Li Yu, Liu Jingnan, Chen Congyan, Pang Enlin, Tan Shujie, Jin Yaming. Online Detection of Molten Pool Temperature During Metal Forming Based on Selective Laser Melting[J]. Chinese Journal of Lasers, 2020, 47(3): 302008 Copy Citation Text show less
    References

    [1] Zhou C Y, Luo L, Liu Y et al. Research status of additive manufacturing technology for metal[J]. Hot Working Technology, 47, 9-14(2018).

    [2] Zhou Y H, Zhang Z H, Wang Y P et al. Selective laser melting of typical metallic materials: an effective process prediction model developed by energy absorption and consumption analysis[J]. Additive Manufacturing, 25, 204-217(2019).

    [3] Yao Y S, Wang J, Chen Q B et al. Research status of defects and defect treatment technology for laser additive manufactured products[J]. Laser & Optoelectronics Progress, 56, 100004(2019).

    [4] Jiang H Z, Li Z Y, Feng T et al. Factor analysis of selective laser melting process parameters with normalised quantities and Taguchi method[J]. Optics & Laser Technology, 119, 105592(2019).

    [5] Xu J G, Chen Y, Chen H et al. Influence of process parameters on forming defects of H13 steel processed by selective laser melting[J]. Laser & Optoelectronics Progress, 55, 041405(2018).

    [6] Zhang D Y, Zhang P D, Liu Z et al. Thermofluid field of molten pool and its effects during selective laser melting (SLM) of Inconel 718 alloy[J]. Additive Manufacturing, 21, 567-578(2018).

    [7] Kundakcıoglu E, Lazoglu I, Poyraz Ö et al. Thermal and molten pool model in selective laser melting process of Inconel 625[J]. The International Journal of Advanced Manufacturing Technology, 95, 3977-3984(2018).

    [8] Wang H F, Tian X J, Cheng X et al. Effects of thermal deformation conditions on microstructures and deformation behaviors of laser additive manufactured TC18 titanium alloys[J]. Chinese Journal of Lasers, 45, 0302008(2018).

    [9] Sun B B, Fang L J, Zhang X J. Study on forming process and microstructure of GH4169 Ni-based superalloy prepared by selective laser melting[J]. Hot Working Technology, 48, 93-98(2019).

    [10] Liu W, Liu T T, Liao W H et al. Study on selective laser melting forming process of cobalt chromium alloy[J]. Chinese Journal of Lasers, 42, 0503001(2015).

    [11] Zhang X Y, Li X B, Tan Z et al. Microstructure and mechanical properties of water atomized Cu-10Sn alloy powder formed parts by selective laser melting[J]. Chinese Journal of Lasers, 45, 1002009(2018).

    [12] Cao H Y, Chen X Z, Hu C et al. Welding quality online detection based on infrared temperature measurement[J]. Journal of Shanghai Jiao Tong University, 50, 66-70(2016).

    [13] Yuan Y H, Yang Q, Yan Z H et al. Research and measurement of surface temperature field in laser cladding forming molten pool[J]. Laser & Infrared, 48, 985-992(2018).

    [14] Mazzoleni L, Demir A G, Caprio L et al. Real-time observation of melt pool in selective laser melting: spatial, temporal and wavelength resolution criteria[J]. IEEE Transactions on Instrumentation and Measurement, 1(2019).

    [15] Liu T T, Liao W H, Zhang K et al. Selective laser melting forming hardness rule of cobalt chromium alloy and its prediction model[J]. Chinese Journal of Lasers, 43, 0303007(2016).

    [16] Du D Z, Liu T T, Liao W H et al. Design of monitoring system of melt pool light intensity in selective laser melting[J]. Infrared and Laser Engineering, 46, 1206002(2017).

    [17] Shao L C. Study of an improved two-colour method integrated with the emissivity ratio model and its application to air-and oxy-fuel flames[D]. Hangzhou: Zhejiang University(2018).

    [18] Dai D H. Cu-based composites fabricated by selective laser melting: simulation and experiments[D]. Nanjing: Nanjing University of Aeronautics and Astronautics(2014).

    [19] Ye W J. Numeriacl simulation on temperature field and morphology evolution of molten pool during selective laser melting processing Xi'an: Xi'an University of[D]. Technology(2019).

    [20] Li C C. Microheterogeneity and structure evolution of Cu-Sn alloy melts[D]. Jinan: University of Jinan(2013).

    [21] Menon P S, Tasirin S K, Ahmad I et al. High performance of a SOI-based lateral PIN photodiode using SiGe/Si multilayer quantum well. [C]∥2012 10th IEEE International Conference on Semiconductor Electronics (ICSE), September 19-21, 2012, Kuala Lumpur, Malaysia. New York: IEEE, 403-406(2012).

    [22] Wang W, Cui M, Li M W et al. Design of pA level current signal detection circuit[J]. Journal of North University of China(Natural Science Edition), 40, 173-179(2019).

    [23] Sai Kumar K, Lokesh Krishna K. Sidda Reddy P R, et al. Implementation of a CMOS operational amplifier using composite cascode stages. [C]∥2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), March 15-16, 2019, Coimbatore, India. New York: IEEE, 689-693(2019).

    [24] Groner S, Polak M. Low-distortion, low-noise composite operational amplifier[J]. Journal of the Audio Engineering Society, 65, 402-407(2017).

    [25] Gift S J G, Maundy B. Versatile composite amplifier configuration[J]. International Journal of Electronics, 102, 993-1006(2015).

    Yuan Jingguang, Li Yu, Liu Jingnan, Chen Congyan, Pang Enlin, Tan Shujie, Jin Yaming. Online Detection of Molten Pool Temperature During Metal Forming Based on Selective Laser Melting[J]. Chinese Journal of Lasers, 2020, 47(3): 302008
    Download Citation