• Acta Physica Sinica
  • Vol. 68, Issue 10, 105203-1 (2019)
Chong-Xiao Zhao, Liang-Wen Qi, Hui-Jie Yan, Ting-Ting Wang, and Chun-Sheng Ren*
DOI: 10.7498/aps.68.20190218 Cite this Article
Chong-Xiao Zhao, Liang-Wen Qi, Hui-Jie Yan, Ting-Ting Wang, Chun-Sheng Ren. Influence of discharge parameters on pulsed discharge of coaxial gun in deflagration mode[J]. Acta Physica Sinica, 2019, 68(10): 105203-1 Copy Citation Text show less
Schematic diagram of experimental equipment实验装置原理图
Fig. 1. Schematic diagram of experimental equipment实验装置原理图
Current and photocurrent signals for 5 kV voltage at gas in the coaxial gun bottom of (a) 1.4 mg, (b) 2.1 mg, (c) 2.3 mg and (d) 2.6 mg, respectively(a)—(d)分别为电压为5 kV, 进气量为1.4, 2.1, 2.3, 2.6 mg的电流信号与光电流信号
Fig. 2. Current and photocurrent signals for 5 kV voltage at gas in the coaxial gun bottom of (a) 1.4 mg, (b) 2.1 mg, (c) 2.3 mg and (d) 2.6 mg, respectively(a)—(d)分别为电压为5 kV, 进气量为1.4, 2.1, 2.3, 2.6 mg的电流信号与光电流信号
The velocity versus with the gas which enters in the coaxial gun bottom with the discharge voltage 5 kV电压5 kV时等离子体输运速度随着进气量的变化
Fig. 3. The velocity versus with the gas which enters in the coaxial gun bottom with the discharge voltage 5 kV电压5 kV时等离子体输运速度随着进气量的变化
The Hβ line of the discharge voltage 5 kV, the gas which enters in the coaxial gun bottom 1.4 mg, the exposure time of the spectrometer 3 s, and the grating set at 1200 g/mm放电电压5 kV、进气量1.4 mg、光谱仪曝光时间3 s光栅设置为1200 g/mm时的Hβ谱线
Fig. 4. The Hβ line of the discharge voltage 5 kV, the gas which enters in the coaxial gun bottom 1.4 mg, the exposure time of the spectrometer 3 s, and the grating set at 1200 g/mm 放电电压5 kV、进气量1.4 mg、光谱仪曝光时间3 s光栅设置为1200 g/mm时的Hβ谱线
Hβ spectrum and its Lorenz fitting line, spectrum broadening is 0.089 nm进气量1.4 mg、放电电压5 kV时, Hβ谱线及其拟合曲线, 展宽为0.089 nm
Fig. 5. Hβ spectrum and its Lorenz fitting line, spectrum broadening is 0.089 nm 进气量1.4 mg、放电电压5 kV时, Hβ谱线及其拟合曲线, 展宽为0.089 nm
Instrument broadening measured using helium laser, spectrum broadening is 0.036 nm使用氦氖激光器测量得到的仪器展宽, 得到的展宽为0.036 nm
Fig. 6. Instrument broadening measured using helium laser, spectrum broadening is 0.036 nm使用氦氖激光器测量得到的仪器展宽, 得到的展宽为0.036 nm
Electron density versus the gas with the discharge voltage of 5 kV放电电压5 kV时电子密度随进气量变化
Fig. 7. Electron density versus the gas with the discharge voltage of 5 kV放电电压5 kV时电子密度随进气量变化
The current signal and magnetic signal for for 5 kV voltage at gas in the coaxial gun bottom of (a) 1.4 mg and (d) 2.6 mg, respectively放电电压5 kV进气量分别为1.4 mg和2.6 mg条件下的电流信号和磁信号
Fig. 8. The current signal and magnetic signal for for 5 kV voltage at gas in the coaxial gun bottom of (a) 1.4 mg and (d) 2.6 mg, respectively放电电压5 kV进气量分别为1.4 mg和2.6 mg条件下的电流信号和磁信号
Current and photocurrent signals for 2.6 mg gas in the coaxial gun bottom at voltages of (a) 5 kV, (b) 6 kV, (c) 7 kV and (d) 8 kV, respectively(a)—(d)分别为进气量2.6 mg, 电压为5, 6, 7, 8 kV的电流信号与光电流信号
Fig. 9. Current and photocurrent signals for 2.6 mg gas in the coaxial gun bottom at voltages of (a) 5 kV, (b) 6 kV, (c) 7 kV and (d) 8 kV, respectively(a)—(d)分别为进气量2.6 mg, 电压为5, 6, 7, 8 kV的电流信号与光电流信号
The velocity versus discharge voltage with the gas which enters in the coaxial gun bottom of 2.6 mg进气量2.6 mg速度随着电压的变化
Fig. 10. The velocity versus discharge voltage with the gas which enters in the coaxial gun bottom of 2.6 mg进气量2.6 mg速度随着电压的变化
The electron density versus discharge voltage with the gas which enters in the coaxial gun bottom of 2.6 mg进气量2.6 mg时电子密度随着电压的变化
Fig. 11. The electron density versus discharge voltage with the gas which enters in the coaxial gun bottom of 2.6 mg进气量2.6 mg时电子密度随着电压的变化
The coaxial gun discharge pictures taken by the digital camera, the exposure time is 1 s, with the gases which enter in the coaxial gun bottom of 5.5 mg and the discharge voltage of (a) 5 kV and (b) 8 kV respectively数码相机拍摄的同轴枪放电图片, (a), (b)分别为进气量5.5 mg, 电压为5 kV和8 kV时的图片
Fig. 12. The coaxial gun discharge pictures taken by the digital camera, the exposure time is 1 s, with the gases which enter in the coaxial gun bottom of 5.5 mg and the discharge voltage of (a) 5 kV and (b) 8 kV respectively数码相机拍摄的同轴枪放电图片, (a), (b)分别为进气量5.5 mg, 电压为5 kV和8 kV时的图片
Current signals and photocurrent signals for a discharge voltage of 5 kV, 1.4 mg gas in the coaxial gun bottom, and capacitances of (a) 180 μF and (b) 120 μF, respectively(a), (b)分别为放电电压5 kV、送气量1.4 mg、电容分别为180 μF和120 μF的电流信号和光电流信号
Fig. 13. Current signals and photocurrent signals for a discharge voltage of 5 kV, 1.4 mg gas in the coaxial gun bottom, and capacitances of (a) 180 μF and (b) 120 μF, respectively(a), (b)分别为放电电压5 kV、送气量1.4 mg、电容分别为180 μF和120 μF的电流信号和光电流信号
Current signal and photocurrent signal for current amplitude of 52 kA, 1.4 mg gas in the coaxial gun bottom, and capacitance of (a) 180 μF and (b) 120 μF, respectively(a), (b)分别为电流幅值52 kA、送气量1.4 mg、电容分别为180 μF和120 μF的电流信号和光电流信号
Fig. 14. Current signal and photocurrent signal for current amplitude of 52 kA, 1.4 mg gas in the coaxial gun bottom, and capacitance of (a) 180 μF and (b) 120 μF, respectively(a), (b)分别为电流幅值52 kA、送气量1.4 mg、电容分别为180 μF和120 μF的电流信号和光电流信号
Chong-Xiao Zhao, Liang-Wen Qi, Hui-Jie Yan, Ting-Ting Wang, Chun-Sheng Ren. Influence of discharge parameters on pulsed discharge of coaxial gun in deflagration mode[J]. Acta Physica Sinica, 2019, 68(10): 105203-1
Download Citation