• Journal of Applied Optics
  • Vol. 43, Issue 3, 510 (2022)
Xuhuan ZHOU1, Yunhui GONG1, Shaohua WU1,2,*, Yuankang WANG1..., Yafang HUANG1, Hongwei YE3, Guangwei WANG1 and Yicheng WANG1|Show fewer author(s)
Author Affiliations
  • 1Yunnan KIRO Photonics Co.,Ltd., Kunming 650217, China
  • 2Kunming Institute of Physics, Kunming 650223, China
  • 3The Second Military Representative Department Garrisoned in Kunming of Chongqing Military Representative Bureau, Army Armaments Department of PLA, Kunming 650032, China
  • show less
    DOI: 10.5768/JAO202243.0305001 Cite this Article
    Xuhuan ZHOU, Yunhui GONG, Shaohua WU, Yuankang WANG, Yafang HUANG, Hongwei YE, Guangwei WANG, Yicheng WANG. Derivation and application of expression methods based on law of reflection and refraction of light[J]. Journal of Applied Optics, 2022, 43(3): 510 Copy Citation Text show less

    Abstract

    The reflection and refraction of light are the most basic methods for the application of geometric optics. In the processing of modern precision optical elements, the different expression methods can provide different solutions for light tracing, prism error analysis as well as prism assembly and adjustment. The traditional form expression methods of the law of reflection and the law of refraction of light were introduced, and the expression methods of vector, matrix and quaternion were derived. Through the simulation calculation assisted by Matlab, the reflected rays of incident light in two different areas of the Schmidt prism inspection optical path was symmetrically distributed on both sides of the reflected rays on the front surface in the horizontal direction, which was consistent with the practical application. The application of expression methods of vector, matrix and quaternion in Schmidt prism inspection optical path was realized. The three expression methods can provide scientific and practical solutions for light tracing, prism error analysis as well as prism assembly and adjustment.
    $ \frac{{{\text{sin}}I}}{{{\text{sin}}{i}}} = \frac{{n'}}{n} $(1)

    View in Article

    $ {{\overrightarrow {\boldsymbol{B}}}} = \overrightarrow {{{{{\boldsymbol{A}}}}'_0}} + \left( { - \overrightarrow {{{{{\boldsymbol{A}}}}_0}} } \right) $(2)

    View in Article

    $ \overrightarrow{{\boldsymbol{B}}}=-2\overrightarrow{{{\boldsymbol{N}}}_{0}}(\overrightarrow{{{\boldsymbol{A}}}_{0}} \cdot \overrightarrow{{{\boldsymbol{N}}}_{0}}) $(3)

    View in Article

    $ \overrightarrow{{{\boldsymbol{A}}}'_{0}}=\overrightarrow{{{\boldsymbol{A}}}_{0}}-2\overrightarrow{{{\boldsymbol{N}}}_{0}}(\overrightarrow{{{\boldsymbol{A}}}_{0}} \cdot \overrightarrow{{{\boldsymbol{N}}}_{0}}) $(4)

    View in Article

    $ {{n}}\sin I = n'\sin i $(5)

    View in Article

    $ n\overrightarrow{{{\boldsymbol{A}}}_{0}}\times \overrightarrow{{{\boldsymbol{N}}}_{0}}=n'\overrightarrow{{{\boldsymbol{A}}}_{0}''}\times \overrightarrow{{{\boldsymbol{N}}}_{0}} $(6)

    View in Article

    $ \overrightarrow{{\boldsymbol{A}}}\times \overrightarrow{{{\boldsymbol{N}}}_{0}}=\overrightarrow{{\boldsymbol{A}}''}\times \overrightarrow{{{\boldsymbol{N}}}_{0}} $(7)

    View in Article

    $ \left(\overrightarrow{{{\boldsymbol{A}}}{''}}-{\overrightarrow{\boldsymbol{A}}}\right)\times \overrightarrow{{{{\boldsymbol{N}}}}_{{0}}}={0} $(8)

    View in Article

    $ \overrightarrow{{\boldsymbol{C}}}=\overrightarrow{{\boldsymbol{A}}''}+\overrightarrow{13}=\overrightarrow{{\boldsymbol{A}}}+\overrightarrow{23} $(9)

    View in Article

    $ \overrightarrow{13}=-\overrightarrow{{{\boldsymbol{N}}}_{0}}(\overrightarrow{{\boldsymbol{A}}''} \cdot \overrightarrow{{{\boldsymbol{N}}}_{0}}) $(10)

    View in Article

    $ \overrightarrow{23}=-\overrightarrow{{{\boldsymbol{N}}}_{0}}(\overrightarrow{{\boldsymbol{A}}} \cdot \overrightarrow{{{\boldsymbol{N}}}_{0}}) $(11)

    View in Article

    $ \overrightarrow{{\boldsymbol{A}}''}-\overrightarrow{{{\boldsymbol{N}}}_{0}}(\overrightarrow{{\boldsymbol{A}}''} \cdot \overrightarrow{{{\boldsymbol{N}}}_{0}})=\overrightarrow{{\boldsymbol{A}}}-\overrightarrow{{{\boldsymbol{N}}}_{0}}(\overrightarrow{{\boldsymbol{A}}} \cdot \overrightarrow{{{\boldsymbol{N}}}_{0}}) $(12)

    View in Article

    $ \boldsymbolA\boldsymbolN0=ncos(πi)=ncosi=n2n2sin2i=n2n2sin2I=n2n2+n2cos2I=n2n2+n2cos2I=n2n2+(\boldsymbolA\boldsymbolN0)2$()

    View in Article

    $ \overrightarrow{{\boldsymbol{A}}''}=\overrightarrow{{\boldsymbol{A}}}-\overrightarrow{{{\boldsymbol{N}}}_{0}}\left[\overrightarrow{{\boldsymbol{A}}} \cdot \overrightarrow{{{\boldsymbol{N}}}_{0}}+\sqrt{{{n'}}^{2}-{{n}}^{2}+{\left(\overrightarrow{{\boldsymbol{A}}} \cdot \overrightarrow{{{\boldsymbol{N}}}_{0}}\right)}^{2}}\right] $(13)

    View in Article

    $ \overrightarrow {{{\boldsymbol{A}}_0}'} = {{A}}_{0{{x}}}'\overrightarrow {\boldsymbol{i}} + {{A}}_{0{{y}}}'\overrightarrow {\boldsymbol{j}} + {{A}}_{0{{{\textit{z}}}}}'\overrightarrow {\boldsymbol{k}} $()

    View in Article

    $ \overrightarrow {{{\boldsymbol{A}}_0}} = {{{A}}_{0{{x}}}}\overrightarrow {\boldsymbol{i}} + {{{A}}_{0{{y}}}}\overrightarrow {\boldsymbol{j}} + {{{A}}_{0{{{\textit{z}}}}}}\overrightarrow {\boldsymbol{k}} $()

    View in Article

    $ \overrightarrow {{{\boldsymbol{N}}_0}} = {{{N}}_{0{{x}}}}\overrightarrow {\boldsymbol{i}} + {{{N}}_{0{{y}}}}\overrightarrow {\boldsymbol{j}} + {{{N}}_{0{{{\textit{z}}}}}}\overrightarrow {\boldsymbol{k}} $()

    View in Article

    $ A_{0x}' = \left( {1 - 2N_{0x}^2} \right){A_{0x}} - 2{N_{0x}}{N_{0y}}{A_{0y}} - 2{N_{0x}}{N_{0{\textit{z}}}}{A_{0{\textit{z}}}} $()

    View in Article

    $ A_{0y}' = - 2{N_{0x}}{N_{0y}}{A_{0x}} + \left( {1 - 2N_{0y}^2} \right){A_{0y}} - 2{N_{0y}}{N_{0{\textit{z}}}}{A_{0{\textit{z}}}} $()

    View in Article

    $ A_{0{\textit{z}}}' = - 2{N_{0x}}{N_{0{\textit{z}}}}{A_{0x}} - 2{N_{0y}}{N_{0{\textit{z}}}}{A_{0y}} + \left( {1 - 2N_{0{\textit{z}}}^2} \right){A_{0{\textit{z}}}} $()

    View in Article

    $ \left[ {A0xA0yA0z} \right] = \left[ {12N0x22N0xN0y2N0xN0z2N0xN0y12N0y22N0yN0z2N0xN0z2N0yN0z12N0z2} \right]\left[ {A0xA0yA0z} \right] $(14)

    View in Article

    $ {\boldsymbol{V}} = \left[ {12N0x22N0xN0y2N0xN0z2N0xN0y12N0y22N0yN0z2N0xN0z2N0yN0z12N0z2} \right] $(15)

    View in Article

    $ {{\boldsymbol{A}}_0}' = {\boldsymbol{V}}{{\boldsymbol{A}}_0} $(16)

    View in Article

    $ I=(φ)+αφ=(β)+isinφ=yR $(17)

    View in Article

    $ n\sin \alpha = n\sin \left( {I + \varphi } \right)= n\sin I\cos \varphi + n\cos I\sin \varphi $(18)

    View in Article

    $ n'\sin \beta = n'\sin \left( {i + \varphi } \right)= n'\sin i\cos \varphi + n'\cos i\sin \varphi $(19)

    View in Article

    $ n\sin I = n'\sin i $(20)

    View in Article

    $ \left\{ y=ynsinβ=nsinαncosincosIRy \right. $()

    View in Article

    $ \left[ {ynsinβ} \right] = \left[ {10ncosincosIR1} \right]\left[ {ynsinα} \right] $(21)

    View in Article

    $ \left[ {ynβ} \right] = \left[ {10nnR1} \right]\left[ {ynα} \right] $(22)

    View in Article

    $ {\boldsymbol{\lambda}} ={{\lambda}}_{0} \cdot 1+{\lambda }_{1}{\boldsymbol{i}}+{\lambda }_{2}{\boldsymbol{j}}+{\lambda }_{3}{\boldsymbol{k}} $(23)

    View in Article

    $ \left\{ \boldsymbolij=\boldsymbolk=\boldsymbolji\boldsymboljk=\boldsymboli=\boldsymbolk\boldsymbolki=\boldsymbolj=\boldsymbolik\boldsymboli2=\boldsymbolj2=\boldsymbolk2=\boldsymbolijk=1 \right. $(24)

    View in Article

    $ {{\boldsymbol{\lambda }}^*} = {\lambda _0} - {\lambda _1}{\boldsymbol{i}} - {\lambda _2}{\boldsymbol{j}} - {\lambda _3}{\boldsymbol{k}} $(25)

    View in Article

    $ \left| {\boldsymbol{\lambda }} \right| = \sqrt {\lambda _0^2 + \lambda _1^2 + \lambda _2^2 + \lambda _3^2} $(26)

    View in Article

    $ {{\boldsymbol{\lambda }}^{ - 1}} = {{\boldsymbol{\lambda }}^*}/{\left| {\boldsymbol{\lambda }} \right|^2} $(27)

    View in Article

    $ {\boldsymbol{P}} = {{{p}}_0} + {{{p}}_1}{\boldsymbol{i}} + {{{p}}_2}{\boldsymbol{j}} + {{p}_3}{\boldsymbol{k}} $()

    View in Article

    $ {\boldsymbol{Q}} = {{{q}}_0} + {{{q}}_1}{\boldsymbol{i}} + {{{q}}_2}{\boldsymbol{j}} + {{{q}}_3}{\boldsymbol{k}} $()

    View in Article

    $ {\boldsymbol{P}} + {\boldsymbol{Q}} = \left( {{{{p}}_0} + {{{q}}_0}} \right) + \left( {{{{p}}_1} + {{{q}}_1}} \right){\boldsymbol{i}} + \left( {{{{p}}_2} + {{{q}}_2}} \right){\boldsymbol{j}} + \left( {{{{p}}_3} + {{{q}}_3}} \right){\boldsymbol{k}} $(28)

    View in Article

    $ {\boldsymbol{PQ}}={p}_{0}{q}_{0}-{\boldsymbol{p}} \cdot {\boldsymbol{q}}+{p}_{0}{\boldsymbol{q}}+{q}_{0}{\boldsymbol{p}}+{\boldsymbol{p}}\times {\boldsymbol{q}} $(29)

    View in Article

    $ {\boldsymbol{PQ}}=-{\boldsymbol{p}} \cdot {\boldsymbol{q}}+{\boldsymbol{p}}\times {\boldsymbol{q}} $(30)

    View in Article

    $ {\boldsymbol{p}} = {{{p}}_1}{\boldsymbol{i}} + {{{p}}_2}{\boldsymbol{j}} + {{{p}}_3}{\boldsymbol{k}} $()

    View in Article

    $ {\boldsymbol{q}} = {{{q}}_1}{\boldsymbol{i}} + {{{q}}_2}{\boldsymbol{j}} + {{{q}}_3}{\boldsymbol{k}} $()

    View in Article

    $ \boldsymbolq\boldsymbolp1=\boldsymbolq\boldsymbolp|\boldsymbolp|2=\boldsymbolqp|\boldsymbolp|2=\boldsymbolq\boldsymbolp+\boldsymbolq×\boldsymbolp|\boldsymbolp|2=\boldsymbolp\boldsymbolq+\boldsymbolp×\boldsymbolq|\boldsymbolp|2=pλqλcosθ+\boldsymbolζpλqλsinθpλ2=cosθ+\boldsymbolζsinθ $(31)

    View in Article

    $ {\boldsymbol{q}} = \left( {\cos \theta + {\boldsymbol{\zeta}} \sin \theta } \right){\boldsymbol{p}} $(32)

    View in Article

    $ {\boldsymbol{Q}} = \left( {\cos \dfrac{\theta }{2} + {\boldsymbol{\zeta}} \sin \dfrac{\theta }{2}} \right){\boldsymbol{P}}\left( {\cos \dfrac{\theta }{2} - {\boldsymbol{\zeta}} \sin \dfrac{\theta }{2}} \right)={\boldsymbol{uP}}{{\boldsymbol{u}}}^{*} $(33)

    View in Article

    $ {{\boldsymbol{A}}}'_{0}=\left(\cos\dfrac\pi{2}+{{\boldsymbol{N}}}_{0}\sin\dfrac\pi{2}\right)\left(-{{\boldsymbol{A}}}_{0}\right)\left(\cos\dfrac\pi{2}-{{\boldsymbol{N}}}_{0}\sin\dfrac\pi{2}\right) = {{\boldsymbol{N}}_0}{{\boldsymbol{A}}_0}{{\boldsymbol{N}}_0} $(34)

    View in Article

    $ {{\boldsymbol{E}}_0} = \frac{1}{{\sin {{I}}}}{{\boldsymbol{N}}_0} \times {{\boldsymbol{A}}_0} $(35)

    View in Article

    $ {\boldsymbol{A}}_0' = {\boldsymbol{h}}{{\boldsymbol{A}}_0}{{\boldsymbol{h}}^*} $(36)

    View in Article

    $ {\boldsymbol{A}}_0' = \left[ {\cos \left( {{{I - i}}} \right) + {{\boldsymbol{E}}_0}\sin \left( {{{I - i}}} \right)} \right]{{\boldsymbol{A}}_0} $(37)

    View in Article

    $ {\boldsymbol{N}}'=\left(\mathrm{cos}\theta +{\boldsymbol{\zeta}} \mathrm{sin}\theta \right){\boldsymbol{N}} $(38)

    View in Article

    $ \boldsymbolN=(1+θ\boldsymbolζ)\boldsymbolN=\boldsymbolN+θ\boldsymbolζ\boldsymbolN=\boldsymbolN+θ(\boldsymbolζ\boldsymbolN+\boldsymbolζ×\boldsymbolN)=\boldsymbolN+\boldsymbolθ\boldsymbolζ×\boldsymbolN=\boldsymbolN+\boldsymbolθ\boldsymbolγ$(39)

    View in Article

    $ {\gamma _2} = \left[ { - \cos \frac{{\text{π }}}{4}{\text{ }} - \sin \frac{{\text{π }}}{4}{\text{ }}0} \right] $()

    View in Article

    $ {\gamma _3} = \left[ {\cos \frac{{3{\rm{\pi }}}}{8}{\text{ }} - \sin \frac{{3{\rm{\pi }}}}{8}{\text{ }}0} \right]$()

    View in Article

    $ {\boldsymbol{N}}_2' = {{\boldsymbol{N}}_2} + {{\boldsymbol{\theta}} _2}{{\boldsymbol{\gamma}} _2} $()

    View in Article

    $ {\boldsymbol{N}}_3' = {{\boldsymbol{N}}_3} + {{\boldsymbol{\theta}} _3}{{\boldsymbol{\gamma}} _3} $()

    View in Article

    $ A1p3=[0,4θ22θ334θ22θ3+2θ2θ3412θ2θ32+2θ24θ33+4θ3,θ22θ34+6θ22θ32θ22+8θ2θ338θ2θ3+θ346θ32+1,0] $()

    View in Article

    $ A1p7=[0, 4θ26θ33+4θ26θ32θ25θ34+12θ25θ322θ254θ24θ33+4θ24θ34θ23θ34+24θ23θ324θ23+4θ22θ334θ22θ32θ2θ34+12θ2θ322θ2+4θ334θ3,θ26θ34+6θ26θ32θ26+8θ25θ338θ25θ3θ24θ34+6θ24θ32θ24+16θ23θ3316θ23θ3+θ22θ346θ22θ32+θ22+8θ2θ338θ2θ3+θ346θ32+1, 0] $()

    View in Article

    $ {{\boldsymbol{A}}_{{\text{1p}}7}} = \left[ {0{\text{ }}} \right. - 2{\theta _2} - 4{\theta _3}\left. {{\text{ }}1{\text{ }}0} \right] $(40)

    View in Article

    $ {{\boldsymbol{A}}_{{\text{1p3}}}} = \left[ {0{\text{ }}2{\theta _2} + 4{\theta _3}} \right.\left. {{\text{ }}1{\text{ }}0} \right] $(41)

    View in Article

    $ θI=(2θ2+4θ3)/2=θ22θ3=ΔA2ΔB=ΔCΔB=δ 67.5(ΔA+ΔB+ΔC=0) $()

    View in Article

    Xuhuan ZHOU, Yunhui GONG, Shaohua WU, Yuankang WANG, Yafang HUANG, Hongwei YE, Guangwei WANG, Yicheng WANG. Derivation and application of expression methods based on law of reflection and refraction of light[J]. Journal of Applied Optics, 2022, 43(3): 510
    Download Citation