• High Power Laser Science and Engineering
  • Vol. 7, Issue 3, 03000e44 (2019)
Chenyi Su, Binglin Shen, Xingqi Xu, Chunsheng Xia, and Bailiang Pan
Author Affiliations
  • Department of Physics, Zhejiang University, Hangzhou 310027, China
  • show less
    DOI: 10.1017/hpl.2019.28 Cite this Article Set citation alerts
    Chenyi Su, Binglin Shen, Xingqi Xu, Chunsheng Xia, Bailiang Pan. Simulation and analysis of the time evolution of laser power and temperature in static pulsed XPALs[J]. High Power Laser Science and Engineering, 2019, 7(3): 03000e44 Copy Citation Text show less

    Abstract

    A theoretical model is established to describe the thermal dynamics and laser kinetics in a static pulsed exciplex pumped Cs–Ar laser (XPAL). The temporal behaviors of both the laser output power and temperature rise in XPALs with a long-time pulse and multi-pulse operation modes are calculated and analyzed. In the case of long-time pulse pumping, the results show that the initial laser power increases with a rise in the initial operating temperature, but the laser power decreases quickly due to heat accumulation. In the case of multi-pulse operation, simulation results show that the optimal laser output power can be obtained by appropriately increasing the initial temperature and reducing the thermal relaxation time.
    $$\begin{eqnarray}\displaystyle \displaystyle \frac{\text{d}n_{0}}{\text{d}t} & = & \displaystyle k_{10}n_{1}-k_{01}n_{0}[\text{Ar}]+\frac{n_{3}}{\unicode[STIX]{x1D70F}_{D1}}\nonumber\\ \displaystyle & & \displaystyle +\,(n_{3}-2n_{0})\unicode[STIX]{x1D70E}_{D1}\frac{f_{p}(P_{l}^{+}+P_{l}^{-})}{h\unicode[STIX]{x1D708}_{l}},\end{eqnarray}$$(1)

    View in Article

    $$\begin{eqnarray}\displaystyle \displaystyle \frac{\text{d}n_{1}}{\text{d}t} & = & \displaystyle -k_{10}n_{1}+k_{01}n_{0}[\text{Ar}]\nonumber\\ \displaystyle & & \displaystyle -\,(n_{1}-n_{2})\int _{0}^{\infty }\frac{\unicode[STIX]{x1D70E}_{D2}(\unicode[STIX]{x1D708})P_{p}(\unicode[STIX]{x1D708})}{h\unicode[STIX]{x1D708}_{p}}\,\text{d}\unicode[STIX]{x1D708},\end{eqnarray}$$(2)

    View in Article

    $$\begin{eqnarray}\displaystyle \displaystyle \frac{\text{d}n_{2}}{\text{d}t} & = & \displaystyle -k_{23}n_{2}+k_{32}n_{3}[\text{Ar}]\nonumber\\ \displaystyle & & \displaystyle +\,(n_{1}-n_{2})\int _{0}^{\infty }\frac{\unicode[STIX]{x1D70E}_{D2}(\unicode[STIX]{x1D708})P_{p}(\unicode[STIX]{x1D708})}{h\unicode[STIX]{x1D708}_{p}}\,\text{d}\unicode[STIX]{x1D708},\end{eqnarray}$$(3)

    View in Article

    $$\begin{eqnarray}\displaystyle \displaystyle \frac{\text{d}n_{3}}{\text{d}t} & = & \displaystyle k_{23}n_{2}-k_{32}n_{3}[\text{Ar}]-\frac{n_{3}}{\unicode[STIX]{x1D70F}_{D1}}\nonumber\\ \displaystyle & & \displaystyle -\,(n_{3}-2n_{0})\unicode[STIX]{x1D70E}_{D1}\frac{f_{p}(P_{l}^{+}+P_{l}^{-})}{h\unicode[STIX]{x1D708}_{l}},\end{eqnarray}$$(4)

    View in Article

    $$\begin{eqnarray}\displaystyle \displaystyle n_{\text{Cs}}\frac{T_{0}}{T} & = & \displaystyle n_{0}+n_{1}+n_{2}+n_{3},\end{eqnarray}$$(5)

    View in Article

    $$\begin{eqnarray}\unicode[STIX]{x1D70E}_{D2}(\unicode[STIX]{x1D708})=\unicode[STIX]{x1D70E}_{D2,0}\frac{(\unicode[STIX]{x0394}\unicode[STIX]{x1D708}_{\text{abs}}/2)^{2}}{(\unicode[STIX]{x1D708}-\unicode[STIX]{x1D708}_{\text{abs}})^{2}+(\unicode[STIX]{x0394}\unicode[STIX]{x1D708}_{\text{abs}}/2)^{2}},\end{eqnarray}$$(6)

    View in Article

    $$\begin{eqnarray}\unicode[STIX]{x1D70E}_{D2,0}=k_{\text{abs}}\frac{[\text{Ar}]}{f_{10}}=\frac{g_{0}}{g_{1}}\frac{k_{\text{abs}}}{4\unicode[STIX]{x1D70B}R_{0}^{2}\unicode[STIX]{x0394}R\exp (-\unicode[STIX]{x0394}E_{10}/k_{b}T)},\end{eqnarray}$$(7)

    View in Article

    $$\begin{eqnarray}f_{p,l}(x,y,z)=\frac{c_{2}}{\unicode[STIX]{x1D70B}w_{p,l}(z)^{2}}\exp \left\{-c_{2}\left[\frac{x^{2}+y^{2}}{w_{p,l}(z)^{2}}\right]\right\},\end{eqnarray}$$(8)

    View in Article

    $$\begin{eqnarray}w_{p,l}(z)=w_{0,p,l}\sqrt{\left[\frac{(z-z_{0})c_{p,l}l_{p,l}}{pw_{0,p,l}}\right]^{2}+1},\end{eqnarray}$$(9)

    View in Article

    $$\begin{eqnarray}P_{p}=P_{p,0}\frac{2}{\unicode[STIX]{x1D708}_{p}}\sqrt{\frac{\ln 2}{\unicode[STIX]{x1D70B}}}\exp \left[-4\ln 2\frac{(\unicode[STIX]{x1D708}-\unicode[STIX]{x1D708}_{p})^{2}}{\unicode[STIX]{x0394}\unicode[STIX]{x1D708}_{p}^{2}}\right],\end{eqnarray}$$(10)

    View in Article

    $$\begin{eqnarray}\displaystyle \displaystyle P_{p}(z+\unicode[STIX]{x0394}z) & = & \displaystyle P_{p}(z)\mathop{\sum }_{-R\leqslant x,y\leqslant R}f_{p}(x,y,z)\nonumber\\ \displaystyle & & \displaystyle \times \exp [-(n_{1}-n_{2})\unicode[STIX]{x1D70E}_{D2}(\unicode[STIX]{x1D708})\unicode[STIX]{x0394}z]\unicode[STIX]{x0394}x\unicode[STIX]{x0394}y,\qquad\end{eqnarray}$$(11)

    View in Article

    $$\begin{eqnarray}\displaystyle \displaystyle P_{l}^{\pm }(z+\unicode[STIX]{x0394}z) & = & \displaystyle P_{l}^{\pm }(z)\mathop{\sum }_{-R\leqslant x,y\leqslant R}f_{l}(x,y,z)\nonumber\\ \displaystyle & & \displaystyle \times \exp [-(n_{3}-2n_{0})\unicode[STIX]{x1D70E}_{D1}\unicode[STIX]{x0394}z]\unicode[STIX]{x0394}x\unicode[STIX]{x0394}y.\end{eqnarray}$$(12)

    View in Article

    $$\begin{eqnarray}\displaystyle & \displaystyle P_{l}^{-}(0)=P_{l}/[T_{l}(1-R_{oc})], & \displaystyle\end{eqnarray}$$(13)

    View in Article

    $$\begin{eqnarray}\displaystyle & \displaystyle P_{l}^{+}(0)=P_{l}T_{l}R_{oc}/(1-R_{oc}). & \displaystyle\end{eqnarray}$$(14)

    View in Article

    $$\begin{eqnarray}c_{p}\unicode[STIX]{x1D70C}\frac{\unicode[STIX]{x2202}T}{\unicode[STIX]{x2202}t}=K\unicode[STIX]{x0394}T+Q,\end{eqnarray}$$(15)

    View in Article

    $$\begin{eqnarray}c_{p}\unicode[STIX]{x1D70C}\frac{\unicode[STIX]{x2202}T}{\unicode[STIX]{x2202}t}=K\left(\frac{\unicode[STIX]{x2202}^{2}T}{\unicode[STIX]{x2202}x^{2}}+\frac{\unicode[STIX]{x2202}^{2}T}{\unicode[STIX]{x2202}y^{2}}+\frac{\unicode[STIX]{x2202}^{2}T}{\unicode[STIX]{x2202}z^{2}}\right)+Q(x,y,z,t).\end{eqnarray}$$(16)

    View in Article

    $$\begin{eqnarray}\left\{\begin{array}{@{}l@{}}\displaystyle \frac{\unicode[STIX]{x2202}T}{\unicode[STIX]{x2202}t}=\frac{T_{i,j,k}^{t+1}-T_{i,j,k}^{t}}{\unicode[STIX]{x0394}t},\\ \displaystyle \frac{\unicode[STIX]{x2202}^{2}T}{\unicode[STIX]{x2202}x^{2}}=\frac{T_{i+1,j,k}^{t}-2T_{i,j,k}^{t}+T_{i-1,j,k}^{t}}{\unicode[STIX]{x0394}x^{2}},\\ \displaystyle \frac{\unicode[STIX]{x2202}^{2}T}{\unicode[STIX]{x2202}y^{2}}=\frac{T_{i,j+1,k}^{t}-2T_{i,j,k}^{t}+T_{i,j-1,k}^{t}}{\unicode[STIX]{x0394}y^{2}},\\ \displaystyle \frac{\unicode[STIX]{x2202}^{2}T}{\unicode[STIX]{x2202}z^{2}}=\frac{T_{i,j,k+1}^{t}-2T_{i,j,k}^{t}+T_{i,j,k-1}^{t}}{\unicode[STIX]{x0394}z^{2}}.\end{array}\right.\end{eqnarray}$$(17)

    View in Article

    $$\begin{eqnarray}\displaystyle T_{i,j,k}^{t+1} & = & \displaystyle (1-4\unicode[STIX]{x1D6FC}-2\unicode[STIX]{x1D6FD})T_{i,j,k}^{t}+\frac{\unicode[STIX]{x0394}t}{c_{p}\unicode[STIX]{x1D70C}}Q_{i,j,k}^{t}\nonumber\\ \displaystyle & & \displaystyle +\,\unicode[STIX]{x1D6FD}(T_{i,j,k+1}^{t}+T_{i,j,k-1}^{t})\nonumber\\ \displaystyle & & \displaystyle +\,\unicode[STIX]{x1D6FC}(T_{i+1,j,k}^{t}+T_{i-1,j,k}^{t}+T_{i,j+1,k}^{t}+T_{i,j-1,k}^{t}).\qquad\end{eqnarray}$$(18)

    View in Article

    $$\begin{eqnarray}\displaystyle Q_{i,j,k}^{t} & = & \displaystyle (k_{01}n_{0_{i},j,k}^{t}[\text{Ar}]-k_{10}n_{1_{i},j,k}^{t})\unicode[STIX]{x0394}E_{10}\nonumber\\ \displaystyle & & \displaystyle +\,(-k_{32}n_{3_{i},j,k}^{t}[\text{Ar}]+k_{23}n_{2_{i},j,k}^{t})\unicode[STIX]{x0394}E_{23}.\qquad\end{eqnarray}$$(19)

    View in Article

    $$\begin{eqnarray}c_{p}\unicode[STIX]{x1D70C}=\frac{c_{p-\text{Ar}}n_{\text{Ar}}}{N_{A}},\end{eqnarray}$$(20)

    View in Article

    Chenyi Su, Binglin Shen, Xingqi Xu, Chunsheng Xia, Bailiang Pan. Simulation and analysis of the time evolution of laser power and temperature in static pulsed XPALs[J]. High Power Laser Science and Engineering, 2019, 7(3): 03000e44
    Download Citation