• NUCLEAR TECHNIQUES
  • Vol. 46, Issue 4, 040010 (2023)
Yi YIN*
Author Affiliations
  • Institution of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • show less
    DOI: 10.11889/j.0253-3219.2023.hjs.46.040010 Cite this Article
    Yi YIN. The BEST framework for exploring the QCD phase diagram: progress summary[J]. NUCLEAR TECHNIQUES, 2023, 46(4): 040010 Copy Citation Text show less
    References

    [1] Luo X F, Wang Q, Xu N et al. Properties of QCD matter at high baryon density[M]. Published by Springer(2022).

    [2] An X, Bluhm M, Du L et al. The BEST framework for the search for the QCD critical point and the chiral magnetic effect[J]. Nuclear Physics A, 1017, 122343(2022).

    [3] Wu S J, Shen C, Song H C. Dynamically exploring the QCD matter at finite temperatures and densities: a short review[J]. Chinese Physics Letters, 38, 28-36(2021).

    [4] Shen C, Yan L. Recent development of hydrodynamic modeling in heavy-ion collisions[J]. Nuclear Science and Techniques, 31, 122(2020).

    [5] Hattori K, Huang X G. Novel quantum phenomena induced by strong magnetic fields in heavy-ion collisions[J]. Nuclear Science and Techniques, 28, 26(2017).

    [6] Wang F Q, Zhao J. Search for the chiral magnetic effect in heavy ion collisions[J]. Nuclear Science and Techniques, 29, 179(2018).

    [7] Gao J H, Ma G L, Pu S et al. Recent developments in chiral and spin polarization effects in heavy-ion collisions[J]. Nuclear Science and Techniques, 31, 90(2020).

    [8] Ma Y G. New type of double-slit interference experiment at Fermi scale[J]. Nuclear Science and Techniques, 34, 16(2023).

    [9] Wang X N. Vector meson spin alignment by the strong force field[J]. Nuclear Science and Techniques, 34, 15(2023).

    [10] Bazavov A, Ding H T, Hegde P et al. Chiral crossover in QCD at zero and non-zero chemical potentials[J]. Physical Letters B, 795, 15-21(2019).

    [11] Borsanyi S, Fodor Z, Guenther J N et al. QCD crossover at finite chemical potential from lattice simulations[J]. Physical Review Letters, 125, 052001(2020).

    [12] Noronha Hostler J, Parotto P, Ratti C et al. Lattice-based equation of state at finite baryon number, electric charge, and strangeness chemical potentials[J]. Physical Review C, 100, 064910(2019).

    [13] Luo X F, Xu N. Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview[J]. Nuclear Science and Techniques, 28, 112(2017).

    [14] Zhu L L, Wang B, Wang M et al. Energy and centrality dependence of light nuclei production in relativistic heavy-ion collisions[J]. Nuclear Science and Techniques, 33, 45(2022).

    [15] Sun K J, Chen L W, Ko C M et al. Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions[J]. Physics Letters B, 774, 103-107(2017).

    [16] Sun K J, Chen L W, Ko C M et al. Light nuclei production as a probe of the QCD phase diagram[J]. Physics Letters B, 781, 499-504(2018).

    [17] Mukherjee S, Venugopalan R, Yin Y. Real-time evolution of non-Gaussian cumulants in the QCD critical regime[J]. Physical Review C, 92, 034912(2015).

    [18] Akamatsu Y, Mazeliauskas A, Teaney D. A kinetic regime of hydrodynamic fluctuations and long time tails for a Bjorken expansion[J]. Physical Review C, 95, 014909(2017).

    [19] Stephanov M, Yin Y. Hydrodynamics with parametric slowing down and fluctuations near the critical point[J]. Physical Review D, 98, 036006(2018).

    [20] An X, Başar G, Stephanov M et al. Evolution of non-Gaussian hydrodynamic fluctuations[J]. Physical Review Letters, 127, 072301(2021).

    [21] Sogabe N, Yin Y. Off-equilibrium non-Gaussian fluctuations near the QCD critical point: an effective field theory perspective[J]. Journal of High Energy Physics, 2022, 124(2022).

    [22] Shen C, Schenke B. Dynamical initial-state model for relativistic heavy-ion collisions[J]. Physical Review C, 97, 024907(2018).

    [23] Parotto P, Bluhm M, Mroczek D et al. QCD equation of state matched to lattice data and exhibiting a critical point singularity[J]. Physical Review C, 101, 034901(2020).

    [24] Mroczek D, Nava Acuna A R, Noronha-Hostler J et al. Quartic cumulant of baryon number in the presence of a QCD critical point[J]. Physical Review C, 103, 034901(2021).

    [25] Du L P, Heinz U. (3+1)-dimensional dissipative relativistic fluid dynamics at non-zero net baryon density[J]. Computer Physics Communications, 251, 107090(2020).

    [26] Wu X Y, Qin G Y, Pang L G et al. (3+1)-D viscous hydrodynamics at finite net baryon density: identified particle spectra, anisotropic flows, and flow fluctuations across energies relevant to the beam-energy scan at RHIC[J]. Physical Review C, 105, 034909(2022).

    [27] Denicol G S, Gale C, Jeon S et al. Net baryon diffusion in fluid dynamic simulations of relativistic heavy-ion collisions[J]. Physical Review C, 98, 034916(2018).

    [28] Du L P, An X, Heinz U. Baryon transport and the QCD critical point[J]. Physical Review C, 104, 064904(2021).

    [29] Rajagopal K, Ridgway G W, Weller R et al. Understanding the out-of-equilibrium dynamics near a critical point in the QCD phase diagram[J]. Physical Review D, 102, 094025(2020).

    [30] Du L P, Heinz U, Rajagopal K et al. Fluctuation dynamics near the QCD critical point[J]. Physical Review C, 102, 054911(2020).

    [31] Nahrgang M, Bluhm M, Schaefer T et al. Diffusive dynamics of critical fluctuations near the QCD critical point[J]. Physical Review D, 99, 116015(2019).

    [32] Pradeep M, Rajagopal K, Stephanov M et al. Freezing out fluctuations in Hydro+ near the QCD critical point[J]. Physical Review D, 106, 036017(2022).

    [33] Oliinychenko D, Koch V. Microcanonical particlization with local conservation laws[J]. Physical Review Letters, 123, 182302(2019).

    [34] Pradeep M S, Stephanov M. Maximum entropy freezeout of hydrodynamic fluctuations[EB/OL]. arXiv(2022). https://arxiv.org/abs/2211.09142

    [35] Sorensen A, Koch V. Phase transitions and critical behavior in hadronic transport with a relativistic density functional equation of state[J]. Physical Review C, 104, 034904(2021).

    [36] Lin Z W, Zheng L. Further developments of a multi-phase transport model for relativistic nuclear collisions[J]. Nuclear Science and Techniques, 32, 113(2021).

    [37] Tang M T, Mao L J, Lu H J et al. Design of an efficient collector for the HIAF electron cooling system[J]. Nuclear Science and Techniques, 32, 116(2021).