[5] YANG W, ZHANG X, TIAN Y, et al. Deep learning for single image super-resolution: a brief review[J/OL]. 2018-08. DOI: 10.1109/TMM.2019.2919431.
[6] Atkinson P M, Tatnall A R. Introduction neural networks in remote sensing[J]. Int. J. Remote Sens., 1997, 18: 699-709.
[7] Foody G, Arora M. An evaluation of some factors affecting the accuracy of classification by an artificial neural network[J]. Int. J. Remote Sens., 1997, 18: 799-810.
[8] ZHONG Y, ZHANG L. An adaptive artificial immune network for supervised classification of multi-/hyperspectral remote sensing imagery[J]. IEEE Trans. Geosci. Remote Sens., 2011, 50: 894-909.
[9] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436.
[10] DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution[C]//European Conference on Computer Vision, 2014: 184-199.
[11] Goodfellow I , Pouget-Abadie J , Mirza M ,et al. Generative adversarial nets[C]//Neural Information Processing Systems, 2014, DOI: 10.3156 /JSOFT.29.5_177_2.
[12] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[13] Lim B, SON S, KIM H. Enhanced deep residual networks for single image super-resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, 1(2): 3.
[14] Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[J/OL]. JMLR.org, 2015, DOI:10.48550/arXiv.1502.03167.
[15] HUI Bingwei, SONG Zhiyong, FAN Hongqi, et al. A dataset for infrared image dim-small aircraft target detection and tracking under ground / air background[DS/OL]. V1. Science Data Bank, 2019[2024-02-03]. https://doi.org/10.11922/sciencedb.902. DOI:10.11922/sciencedb.902.