• Advanced Photonics
  • Vol. 3, Issue 5, 055002 (2021)
Xiaodong Zheng1、†, Peiyu Zhang1, Renyou Ge2, Liangliang Lu1, Guanglong He1, Qi Chen1, Fangchao Qu1, Labao Zhang1、*, Xinlun Cai2、*, Yanqing Lu1, Shining Zhu1, Peiheng Wu1, and Xiao-Song Ma1、*
Author Affiliations
  • 1Nanjing University, National Laboratory of Solid-state Microstructures, School of Physics, Research Institute of Superconducting Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
  • 2Sun Yat-sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangzhou, China
  • show less
    DOI: 10.1117/1.AP.3.5.055002 Cite this Article Set citation alerts
    Xiaodong Zheng, Peiyu Zhang, Renyou Ge, Liangliang Lu, Guanglong He, Qi Chen, Fangchao Qu, Labao Zhang, Xinlun Cai, Yanqing Lu, Shining Zhu, Peiheng Wu, Xiao-Song Ma. Heterogeneously integrated, superconducting silicon-photonic platform for measurement-device-independent quantum key distribution[J]. Advanced Photonics, 2021, 3(5): 055002 Copy Citation Text show less
    References

    [1] H.-K. Lo, H. F. Chau. Unconditional security of quantum key distribution over arbitrarily long distances. Science, 283, 2050-2056(1999).

    [2] N. Gisin et al. Quantum cryptography. Rev. Mod. Phys., 74, 145-195(2002).

    [3] V. Scarani et al. The security of practical quantum key distribution. Rev. Mod. Phys., 81, 1301-1350(2009).

    [4] F. Xu et al. Secure quantum key distribution with realistic devices. Rev. Mod. Phys., 92, 025002(2020).

    [5] S. Pirandola et al. Advances in quantum cryptography. Adv. Opt. Photonics, 12, 1012-1236(2020).

    [6] V. Makarov, A. Anisimov, J. Skaar. Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A, 74, 022313(2006).

    [7] Y. Zhao et al. Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A, 78, 042333(2008).

    [8] L. Lydersen et al. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics, 4, 686-689(2010).

    [9] M. Elezov et al. Countermeasure against bright-light attack on superconducting nanowire single-photon detector in quantum key distribution. Opt. Express, 27, 30979-30988(2019).

    [10] S. L. Braunstein, S. Pirandola. Side-channel-free quantum key distribution. Phys. Rev. Lett., 108, 130502(2012).

    [11] H.-K. Lo, M. Curty, B. Qi. Measurement-device-independent quantum key distribution. Phys. Rev. Lett., 108, 130503(2012).

    [12] A. Rubenok et al. Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Phys. Rev. Lett., 111, 130501(2013).

    [13] Y. Liu et al. Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett., 111, 130502(2013).

    [14] Y.-L. Tang et al. Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett., 113, 190501(2014).

    [15] Z. Tang et al. Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett., 112, 190503(2014).

    [16] C. Wang et al. Phase-reference-free experiment of measurement-device-independent quantum key distribution. Phys. Rev. Lett., 115, 160502(2015).

    [17] L. Comandar et al. Quantum key distribution without detector vulnerabilities using optically seeded lasers. Nat. Photonics, 10, 312-315(2016).

    [18] H.-L. Yin et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett., 117, 190501(2016).

    [19] C. Wang et al. Measurement-device-independent quantum key distribution robust against environmental disturbances. Optica, 4, 1016-1023(2017).

    [20] H. Liu et al. Experimental demonstration of high-rate measurement-device-independent quantum key distribution over asymmetric channels. Phys. Rev. Lett., 122, 160501(2019).

    [21] B. Fröhlich et al. A quantum access network. Nature, 501, 69-72(2013).

    [22] R. J. Hughes et al. Network-centric quantum communications with application to critical infrastructure protection(2013).

    [23] Y.-L. Tang et al. Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys. Rev. X, 6, 011024(2016).

    [24] Y. Fu et al. Long-distance measurement-device-independent multiparty quantum communication. Phys. Rev. Lett., 114, 090501(2015).

    [25] C. Zhu, F. Xu, C. Pei. W-state analyzer and multi-party measurement-device-independent quantum key distribution. Sci. Rep., 5, 17449(2015).

    [26] F. Grasselli, H. Kampermann, D. Bruß. Conference key agreement with single-photon interference. New J. Phys., 21, 123002(2019).

    [27] Y. Ding et al. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. npj Quantum Inf., 3, 25(2017).

    [28] D. Bunandar et al. Metropolitan quantum key distribution with silicon photonics. Phys. Rev. X, 8, 021009(2018).

    [29] C. Ma et al. Silicon photonic transmitter for polarization-encoded quantum key distribution. Optica, 3, 1274-1278(2016).

    [30] P. Sibson et al. Integrated silicon photonics for high-speed quantum key distribution. Optica, 4, 172-177(2017).

    [31] K. Wei et al. High-speed measurement-device-independent quantum key distribution with integrated silicon photonics. Phys. Rev. X, 10, 031030(2020).

    [32] C. Agnesi et al. Hong–Ou–Mandel interference between independent III–V on silicon waveguide integrated lasers. Opt. Lett., 44, 271-274(2019).

    [33] H. Semenenko et al. Chip-based measurement-device-independent quantum key distribution. Optica, 7, 238-242(2020).

    [34] P. Sibson et al. Chip-based quantum key distribution. Nat. Commun., 8, 13984(2017).

    [35] C.-Y. Wang et al. Integrated measurement server for measurement-device-independent quantum key distribution network. Opt. Express, 27, 5982-5989(2019).

    [36] G. Zhang et al. An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat. Photonics, 13, 839-842(2019).

    [37] J. F. Tasker et al. Silicon photonics interfaced with integrated electronics for 9 GHz measurement of squeezed light. Nat. Photonics, 15, 11-15(2021).

    [38] S. Pirandola et al. High-rate measurement-device-independent quantum cryptography. Nat. Photonics, 9, 397-402(2015).

    [39] C. Ottaviani et al. Modular network for high-rate quantum conferencing. Commun. Phys., 2, 118(2019).

    [40] J. Calsamiglia, N. Lütkenhaus. Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B, 72, 67-71(2001).

    [41] J. A. W. van Houwelingen et al. Quantum teleportation with a three-Bell-state analyzer. Phys. Rev. Lett., 96, 130502(2006).

    [42] F. Samara et al. Entanglement swapping between independent and asynchronous integrated photon-pair sources. Quantum Sci. Technol., 6, 045024(2021).

    [43] W. H. Pernice et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun., 3, 1325(2012).

    [44] B. Korzh et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photonics, 14, 250-255(2020).

    [45] S. Ferrari, C. Schuck, W. Pernice. Waveguide-integrated superconducting nanowire single-photon detectors. Nanophotonics, 7, 1725-1758(2018).

    [46] Y. Ding et al. Fully etched apodized grating coupler on the SOI platform with −0.58 dB coupling efficiency. Opt. Lett., 39, 5348-5350(2014).

    [47] Y. Luo et al. Low-loss two-dimensional silicon photonic grating coupler with a backside metal mirror. Opt. Lett., 43, 474-477(2018).

    [48] A. Gaggero et al. Amplitude-multiplexed readout of single photon detectors based on superconducting nanowires. Optica, 6, 823-828(2019).

    [49] A. J. Kerman et al. Kinetic-inductance-limited reset time of superconducting nanowire photon counters. Appl. Phys. Lett., 88, 111116(2006).

    [50] R. Valivarthi et al. Efficient Bell state analyzer for time-bin qubits with fast-recovery WSi superconducting single photon detectors. Opt. Express, 22, 24497-24506(2014).

    [51] J. Jin et al. Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories. Nat. Commun., 4, 2386(2013).

    [52] Y.-H. Zhou, Z.-W. Yu, X.-B. Wang. Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A, 93, 042324(2016).

    [53] Z. Zhang et al. Improved key-rate bounds for practical decoy-state quantum-key-distribution systems. Phys. Rev. A, 95, 012333(2017).

    [54] M. Curty et al. Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun., 5, 3732(2014).

    [55] S. Pirandola et al. Fundamental limits of repeaterless quantum communications. Nat. Commun., 8, 15043(2017).

    [56] R. I. Woodward et al. Gigahertz measurement-device-independent quantum key distribution using directly modulated lasers. npj Quantum Inf., 7, 58(2021).

    [57] M. Lucamarini et al. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature, 557, 400-403(2018).

    Xiaodong Zheng, Peiyu Zhang, Renyou Ge, Liangliang Lu, Guanglong He, Qi Chen, Fangchao Qu, Labao Zhang, Xinlun Cai, Yanqing Lu, Shining Zhu, Peiheng Wu, Xiao-Song Ma. Heterogeneously integrated, superconducting silicon-photonic platform for measurement-device-independent quantum key distribution[J]. Advanced Photonics, 2021, 3(5): 055002
    Download Citation