• Acta Physica Sinica
  • Vol. 68, Issue 24, 244203-1 (2019)
Bo Hu1、2、3, Yue-Hao Wu1、2、3、*, Yu-Lu Zheng1、2、3, and Shi-Xun Dai2、3
Author Affiliations
  • 1Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
  • 2Advanced Technology Research Institute, Laboratory of Infrared Materials and Devices, Ningbo University, Ningbo 315211, China
  • 3Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo 315211, China
  • show less
    DOI: 10.7498/aps.68.20191051 Cite this Article
    Bo Hu, Yue-Hao Wu, Yu-Lu Zheng, Shi-Xun Dai. Fabrication of tellurite glass microdisks with thermal pressing method[J]. Acta Physica Sinica, 2019, 68(24): 244203-1 Copy Citation Text show less
    A typical batch of tellurite glass microspheres fabricated in this work. Inset: SEM image of a 92.13-μm diameter tellurite glass microdisk laser.实验制备的一批典型的碲酸盐玻璃微球(内插图为一颗直径为92.13 μm的碲酸盐玻璃微球的SEM图)
    Fig. 1. A typical batch of tellurite glass microspheres fabricated in this work. Inset: SEM image of a 92.13-μm diameter tellurite glass microdisk laser.实验制备的一批典型的碲酸盐玻璃微球(内插图为一颗直径为92.13 μm的碲酸盐玻璃微球的SEM图)
    Schematic drawing of the second heating procedure.第二次加热示意图
    Fig. 2. Schematic drawing of the second heating procedure.第二次加热示意图
    (a) Top-view and (b) side-view of a 254.78-μm-diameter microdisk fabricated with a 101.56-μm-diameter microsphere.由一个直径为101.56 μm的微球压出的直径为254.78 μm的微盘谐振腔的SEM照片 (a)俯视图; (b)侧视图
    Fig. 3. (a) Top-view and (b) side-view of a 254.78-μm-diameter microdisk fabricated with a 101.56-μm-diameter microsphere.由一个直径为101.56 μm的微球压出的直径为254.78 μm的微盘谐振腔的SEM照片 (a)俯视图; (b)侧视图
    (a) Top-view and (b) side-view of a 101.52-μm-diameter microdisk fabricated with a 62.48-μm-diameter microsphere.由一个直径为62.48 μm的微球压出的直径为101.52 μm的微盘谐振腔的SEM照片 (a)俯视图; (b)侧视图
    Fig. 4. (a) Top-view and (b) side-view of a 101.52-μm-diameter microdisk fabricated with a 62.48-μm-diameter microsphere.由一个直径为62.48 μm的微球压出的直径为101.52 μm的微盘谐振腔的SEM照片 (a)俯视图; (b)侧视图
    (a) A 105.74-μm-diameter microdisk coupled with a 1.83-μm-waist-diameter fiber taper; (b) a typical absorption peak at 1551.0058 nm, representing a Q-factor of 6.2 × 105.(a)一颗直径为105.74 μm的微盘与一根锥腰直径为1.83 μm的光纤锥耦合图; (b)在1551.0058 nm处获取的吸收峰(Q值为6.2 × 105)
    Fig. 5. (a) A 105.74-μm-diameter microdisk coupled with a 1.83-μm-waist-diameter fiber taper; (b) a typical absorption peak at 1551.0058 nm, representing a Q-factor of 6.2 × 105. (a)一颗直径为105.74 μm的微盘与一根锥腰直径为1.83 μm的光纤锥耦合图; (b)在1551.0058 nm处获取的吸收峰(Q值为6.2 × 105)
    (a) Whispering gallery mode patterns obtained with a Nd3+-doped tellurite glass microdisk at different pump powers; (b) threshold behavior of the microdisk laser. Inset in panel (b) shows the transmission spectra of the coupling system at pump powers of 1.177 mW and 1.364 mW.(a)从一颗掺Nd3+的有源微盘谐振腔中获取的不同抽运功率下的回廊模; (b)微盘谐振腔的激光阈值现象(内插图为微盘谐振腔在抽运阈值附近(1.177 mW和1.364 mW)出现的激光峰)
    Fig. 6. (a) Whispering gallery mode patterns obtained with a Nd3+-doped tellurite glass microdisk at different pump powers; (b) threshold behavior of the microdisk laser. Inset in panel (b) shows the transmission spectra of the coupling system at pump powers of 1.177 mW and 1.364 mW. (a)从一颗掺Nd3+的有源微盘谐振腔中获取的不同抽运功率下的回廊模; (b)微盘谐振腔的激光阈值现象(内插图为微盘谐振腔在抽运阈值附近(1.177 mW和1.364 mW)出现的激光峰)
    Threshold behavior of a Tm3+-doped microdisk laser (diameter: 104.34 μm, thickness: 15.86 μm). Inset: transmission spectra of the coupling system at pump powers of 0.928 mW and 1.306 mW.从一颗掺Tm3+微盘(直径为104.34 μm, 厚度为15.86 μm)中测得的激光阈值现象(内插图为微盘谐振腔在抽运阈值(0.928 mW和1.306 mW)附近出现的位于1908.63 nm处的激光峰)
    Fig. 7. Threshold behavior of a Tm3+-doped microdisk laser (diameter: 104.34 μm, thickness: 15.86 μm). Inset: transmission spectra of the coupling system at pump powers of 0.928 mW and 1.306 mW. 从一颗掺Tm3+微盘(直径为104.34 μm, 厚度为15.86 μm)中测得的激光阈值现象(内插图为微盘谐振腔在抽运阈值(0.928 mW和1.306 mW)附近出现的位于1908.63 nm处的激光峰)
    Bo Hu, Yue-Hao Wu, Yu-Lu Zheng, Shi-Xun Dai. Fabrication of tellurite glass microdisks with thermal pressing method[J]. Acta Physica Sinica, 2019, 68(24): 244203-1
    Download Citation