[1] Q. Wang, B. Niu, Y. Han, Q. Zheng, L. Li, M. Cao. Nature-inspired 3D hierarchical structured “vine” for efficient microwave attenuation and electromagnetic energy conversion device. Chem. Eng. J., 452, 139042(2023).
[2] Q. Zheng, J. Wang, M. Yu, W.-Q. Cao, H. Zhai, M.-S. Cao. Heterodimensional structure porous nanofibers embedded confining magnetic nanocrystals for electromagnetic functional material and device. Carbon, 210, 118049(2023).
[3] X. Ma, J. Pan, H. Guo, J. Wang, C. Zhang, J. Han, Z. Lou, C. Ma, S. Jiang, K. Zhang. Ultrathin wood-derived conductive carbon composite film for electromagnetic shielding and electric heating management. Adv. Funct. Mater., 33, 2213431(2023).
[4] Y.-Y. Wang, W.-J. Sun, D.-X. Yan, K. Dai, Z.-M. Li. Ultralight carbon nanotube/graphene/polyimide foam with heterogeneous interfaces for efficient electromagnetic interference shielding and electromagnetic wave absorption. Carbon, 176, 118(2021).
[5] Y. Wang, Z.-W. Fan, H. Zhang, J. Guo, D.-X. Yan, S. Wang, K. Dai, Z.-M. Li. 3D-printing of segregated carbon nanotube/polylactic acid composite with enhanced electromagnetic interference shielding and mechanical performance. Mater. Des., 197, 109222(2021).
[6] C. Li, H. Zhang, Y. Song, L. Cai, J. Wu, J. Wu, S. Wang, C. Xiong. Robust superhydrophobic and porous melamine-formaldehyde based composites for high-performance electromagnetic interference shielding. Colloids Surf. A, 624, 126742(2021).
[7] W.-C. Yu, T. Wang, G.-Q. Zhang, Z.-G. Wang, H.-M. Yin, D.-X. Yan, J.-Z. Xu, Z.-M. Li. Largely enhanced mechanical property of segregated carbon nanotube/poly (vinylidene fluoride) composites with high electromagnetic interference shielding performance. Compos. Sci. Technol., 167, 260(2018).
[8] J. Ju, T. Kuang, X. Ke, M. Zeng, Z. Chen, S. Zhang, X. Peng. Lightweight multifunctional polypropylene/carbon nanotubes/carbon black nanocomposite foams with segregated structure, ultralow percolation threshold and enhanced electromagnetic interference shielding performance. Compos. Sci. Technol., 193, 108116(2020).
[9] H.-Y. Zhang, J.-Y. Li, Y. Pan, Y.-F. Liu, N. Mahmood, X. Jian. Flexible carbon fiber-based composites for electromagnetic interference shielding. Rare Met., 41, 1(2022).
[10] T. Sun, Z. Liu, S. Li, H. Liu, F. Chen, K. Wang, Y. Zhao. Effective improvement on microwave absorbing performance of epoxy resin-based composites with 3D MXene foam prepared by one-step impregnation method. Compos. A, 150, 106594(2021).
[11] K. Zubair, A. Ashraf, H. Gulzar, M. F. Shakir, Y. Nawab, Z. Rehan, I. A. Rashid. Study of mechanical, electrical and EMI shielding properties of polymer-based nanocomposites incorporating polyaniline coated graphene nanoparticles. Nano Express, 2, 010038(2021).
[12] W. Cai, W. Ma, W. Chen, P. Liu, Y. Liu, Z. Liu, W. He, J. Li. Microwave-assisted reduction and sintering to construct hybrid networks of reduced graphene oxide and MXene for electromagnetic interference shielding. Compos. A, 157, 106928(2022).
[13] H. K. Choudhary, R. Kumar, S. P. Pawar, B. Sahoo. Role of graphitization-controlled conductivity in enhancing absorption dominated EMI shielding behavior of pyrolysis-derived Fe3C@ C-PVDF nanocomposites. Mater. Chem. Phys., 263, 124429(2021).
[14] J. Kruželák, A. Kvasničáková, K. Hložeková, I. Hudec. Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Adv., 3, 123(2021).
[15] H. K. Choudhary, R. Kumar, S. P. Pawar, U. Sundararaj, B. Sahoo. Superiority of graphite coated metallic-nanoparticles over graphite coated insulating-nanoparticles for enhancing EMI shielding. New J. Chem., 45, 4592(2021).
[16] K. Sushmita, P. Formanek, B. Krause, P. Pötschke, S. Bose. Distribution of carbon nanotubes in polycarbonate-based blends for electromagnetic interference shielding. ACS Appl. Nano Mater., 5, 662(2022).
[17] K. S. Kumar, R. Rengaraj, G. Venkatakrishnan, A. Chandramohan. Polymeric materials for electromagnetic shielding-A review. Mater. Today Proc., 47, 4925(2021).
[18] Y. Wang, X. Gao, Y. Fu, X. Wu, Q. Wang, W. Zhang, C. Luo. Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding. Compos. B, 169, 221(2019).
[19] Y. Chen, J. Li, T. Li, L. Zhang, F. Meng. Recent advances in graphene-based films for electromagnetic interference shielding: Review and future prospects. Carbon, 180, 163(2021).
[20] P. Song, C. Liang, L. Wang, H. Qiu, H. Gu, J. Kong, J. Gu. Obviously improved electromagnetic interference shielding performances for epoxy composites via constructing honeycomb structural reduced graphene oxide. Compos. Sci. Technol., 181, 107698(2019).
[21] F. Sharif, M. Arjmand, A. A. Moud, U. Sundararaj, E. P. Roberts. Segregated hybrid poly (methyl methacrylate)/graphene/magnetite nanocomposites for electromagnetic interference shielding. ACS Appl. Mater. Interfaces, 9, 14171(2017).
[22] K. Zhang, G.-H. Li, L.-M. Feng, N. Wang, J. Guo, K. Sun, K.-X. Yu, J.-B. Zeng, T. Li, Z. Guo. Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly (L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks. J. Mater. Chem. C, 5, 9359(2017).
[23] Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng, Q. Xue, J.-K. Kim. Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces, 9, 9059(2017).
[24] C. Liang, H. Qiu, Y. Han, H. Gu, P. Song, L. Wang, J. Kong, D. Cao, J. Gu. Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. Mater. Chem. C, 7, 2725(2019).
[25] H. Liu, Y. Xu, J.-P. Cao, D. Han, Q. Yang, R. Li, F. Zhao. Skin structured silver/three-dimensional graphene/polydimethylsiloxane composites with exceptional electromagnetic interference shielding effectiveness. Compos. A, 148, 106476(2021).
[26] S.-H. Lee, D. Kang, I.-K. Oh. Multilayered graphene-carbon nanotube-iron oxide three-dimensional heterostructure for flexible electromagnetic interference shielding film. Carbon, 111, 248(2017).
[27] J. Li, X. Zhao, W. Wu, X. Ji, Y. Lu, L. Zhang. Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity. Chem. Eng. J, 415, 129054(2021).
[28] J. Chen, X. Liang, W. Liu, W. Gu, B. Zhang, G. Ji. Mesoporous carbon hollow spheres as a light weight microwave absorbing material showing modulating dielectric loss. Dalton Trans., 48, 10145(2019).
[29] X. Qiu, L. Wang, H. Zhu, Y. Guan, Q. Zhang. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale, 9, 7408(2017).
[30] Y. Yang, M. C. Gupta, K. L. Dudley, R. W. Lawrence. Novel carbon nanotube − polystyrene foam composites for electromagnetic interference shielding. Nano Lett., 5, 2131(2005).
[31] J. Chen, X. Liao, S. Li, W. Wang, F. Guo, G. Li. A promising strategy for efficient electromagnetic interference shielding by designing a porous double-percolated structure in MWCNT/polymer-based composites. Compos. A, 138, 106059(2020).
[32] J.-M. Thomassin, C. Pagnoulle, L. Bednarz, I. Huynen, R. Jerome, C. Detrembleur. Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction. J. Mater. Chem., 18, 792(2008).
[33] X.-Y. Wang, S.-Y. Liao, H.-P. Huang, Y.-G. Hu, P.-L. Zhu, R. Sun, Y.-J. Wan. graphene oxide/carbon tube composite films with tunable porous structures for electromagnetic interference shielding. ACS Appl. Nano Mater., 5, 13509(2022).
[34] J. Tang, N. Liang, L. Wang, J. Li, G. Tian, D. Zhang, S. Feng, H. Yue. Three-dimensional nitrogen-doped reduced graphene oxide aerogel decorated with Ni nanoparticles with tunable and unique microwave absorption. Carbon, 152, 575(2019).
[35] F. Banhart, J. Kotakoski, A. V. Krasheninnikov. Structural defects in graphene. ACS Nano, 5, 26(2011).
[36] B. Quan, X. Liang, G. Ji, Y. Cheng, W. Liu, J. Ma, Y. Zhang, D. Li, G. Xu. Dielectric polarization in electromagnetic wave absorption: Review and perspective. J. Alloys Compd., 728, 1065(2017).
[37] Y. Qing, Y. Li, F. Luo. Electromagnetic interference shielding properties of nitrogen-doped graphene/epoxy composites. J. Mater. Sci.: Mater. Electron., 32, 25649(2021).
[38] L. Quan, F. Qin, D. Estevez, H. Wang, H. Peng. Magnetic graphene for microwave absorbing application: towards the lightest graphene-based absorber. Carbon, 125, 630(2017).
[39] Q. Li, X. Tian, W. Yang, L. Hou, Y. Li, B. Jiang, X. Wang, Y. Li. Fabrication of porous graphene-like carbon nanosheets with rich doped-nitrogen for high-performance electromagnetic microwave absorption. Appl. Surf. Sci., 530, 147298(2020).
[40] L. Quan, F. Qin, Y. Li, D. Estevez, G. Fu, H. Wang, H. Peng. Magnetic graphene enabled tunable microwave absorber via thermal control. Nanotechnology, 29, 245706(2018).
[41] J. Tuček, P. Błoński, Z. Sofer, P. Šimek, M. Petr, M. Pumera, M. Otyepka, R. Zbořil. Sulfur doping induces strong ferromagnetic ordering in graphene: Effect of concentration and substitution mechanism. Adv. Mater., 28, 5045(2016).
[42] J. Feng, F. Pu, Z. Li, X. Li, X. Hu, J. Bai. Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon, 104, 214(2016).
[43] Z. Li, X. Li, Y. Zong, G. Tan, Y. Sun, Y. Lan, M. He, Z. Ren, X. Zheng. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon, 115, 493(2017).
[44] R. Sánchez-Salas, E. Muñoz-Sandoval, M. Endo, A. Morelos-Gómez, F. López-Urías. Nitrogen and sulfur incorporation into graphene oxide by mechanical process. Adv. Eng. Mater., 23, 2001444(2021).
[45] P. Sun, H. Liu, M. Feng, L. Guo, Z. Zhai, Y. Fang, X. Zhang, V. K. Sharma. Nitrogen-sulfur co-doped industrial graphene as an efficient peroxymonosulfate activator: Singlet oxygen-dominated catalytic degradation of organic contaminants. Appl. Catal., B, 251, 335(2019).
[46] V. Thirumal, T. Sreekanth, K. Yoo, J. Kim. Biomass-derived hard carbon and nitrogen-sulfur co-doped graphene for high-performance symmetric sodium ion capacitor devices. Energies, 16, 802(2023).
[47] M. F. Gasim, A. Veksha, G. Lisak, S.-C. Low, T. S. Hamidon, M. H. Hussin, W.-D. Oh. Importance of carbon structure for nitrogen and sulfur co-doping to promote superior ciprofloxacin removal via peroxymonosulfate activation. J. Colloid Interface Sci., 634, 586(2023).
[49] J. Zhao, Y. Liu, X. Quan, S. Chen, H. Zhao, H. Yu. Nitrogen and sulfur co-doped graphene/carbon nanotube as metal-free electrocatalyst for oxygen evolution reaction: the enhanced performance by sulfur doping. Electrochim. Acta, 204, 169(2016).
[50] S. N. Alam, N. Sharma, L. Kumar. Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene, 6, 1(2017).
[51] N. I. Zaaba, K. L. Foo, U. Hashim, S. J. Tan, W.-W. Liu, C. H. Voon. Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng., 184, 469(2017).
[52] B.-X. Zhang, H. Gao, X.-L. Li. Synthesis and optical properties of nitrogen and sulfur co-doped graphene quantum dots. New J. Chem., 38, 4615(2014).
[53] Z. S. Schroer, Y. Wu, Y. Xing, X. Wu, X. Liu, X. Wang, O. G. Pino, C. Zhou, C. Combs, Q. Pu. Nitrogen–sulfur-doped graphene quantum dots with metal ion-resistance for bioimaging. ACS Appl. Nano Mater., 2, 6858(2019).
[54] D. Wu, T. Wang, L. Wang, D. Jia. Hydrothermal synthesis of nitrogen, sulfur co-doped graphene and its high performance in supercapacitor and oxygen reduction reaction. Microporous Mesoporous Mater., 290, 109556(2019).
[55] T. Wang, L. Wang, D. Wu, W. Xia, H. Zhao, D. Jia. Hydrothermal synthesis of nitrogen-doped graphene hydrogels using amino acids with different acidities as doping agents. J. Mater. Chem. A, 2, 8352(2014).
[56] K. Kakaei, G. Ghadimi. A green method for Nitrogen-doped graphene and its application for oxygen reduction reaction in alkaline media. Mater. Technol., 36, 46(2021).
[57] G. Sun, H. Xie, J. Ran, L. Ma, X. Shen, J. Hu, H. Tong. Rational design of uniformly embedded metal oxide nanoparticles into nitrogen-doped carbon aerogel for high-performance asymmetric supercapacitors with a high operating voltage window. J. Mater. Chem. A, 4, 16576(2016).
[58] J. Guo, S. Zhang, M. Zheng, J. Tang, L. Liu, J. Chen, X. Wang. Graphitic-N-rich N-doped graphene as a high performance catalyst for oxygen reduction reaction in alkaline solution. Int. J. Hydrogen Energy, 45, 32402(2020).
[59] W. J. Wolfgong, A. S. H. Makhlouf, M. Aliofkhazraei. Handbook of Materials Failure Analysis with Case Studies from the Aerospace and Automotive Industries, 279-307(2016).
[60] Y. Xu, A. Uddin, D. Estevez, Y. Luo, H. Peng, F. Qin. Lightweight microwire/graphene/silicone rubber composites for efficient electromagnetic interference shielding and low microwave reflectivity. Compos. Sci. Technol., 189, 108022(2020).
[61] T. Lu, H. Gu, Y. Hu, T. Zhao, P. Zhu, R. Sun, C.-P. Wong. Three dimensional copper foam-filled elastic conductive composites with simultaneously enhanced mechanical, electrical, thermal and electromagnetic interference (emi) shielding properties. 69th Electronic Components and Technology Conf., 1916-1920(2019).
[62] T. H. Elagib, N. A. Kabbashi, E. A. Hassan, M. Alam, M. A. F. Al-Khatib. The role of high-performance microwave absorbing materials in electromagnetic interference shielding: A review of the advanced internal design of polymer-based nano-composites. Ann. Faculty Eng. Hunedoara-Int. J. Eng., 19(2022).
[63] Y. Yu, Z. Chao, Q. Gong, C. Li, H. Fu, F. Lei, D. Hu, L. Zheng. Tailoring hierarchical carbon nanotube cellular structure for electromagnetic interference shielding in extreme conditions. Mater. Des., 206, 109783(2021).
[64] A. Ashery, A. Gaballah, E. M. Ahmed. Tuned high dielectric constant, low dielectric loss tangent with positive and negative values for PPy/MWCNTs/TiO2/Al2O3/n-Si. J. Exp. Nanosci., 16, 309(2021).
[65] R. Shu, Y. Wu, W. Li, J. Zhang, Y. Liu, J. Shi, M. Zheng. Fabrication of ferroferric oxide–carbon/reduced graphene oxide nanocomposites derived from Fe-based metal–organic frameworks for microwave absorption. Compos. Sci. Technol., 196, 108240(2020).
[66] R. Shu, G. Zhang, C. Zhang, Y. Wu, J. Zhang. Nitrogen-doping-regulated electromagnetic wave absorption properties of ultralight three-dimensional porous reduced graphene oxide aerogels. Adv. Electron. Mater., 7, 2001001(2021).
[67] Y. Wu, R. Shu, X. Shan, J. Zhang, J. Shi, Y. Liu, M. Zheng. Facile design of cubic-like cerium oxide nanoparticles decorated reduced graphene oxide with enhanced microwave absorption properties. J. Alloys Compd., 817, 152766(2020).
[68] X. Zhang, J. Zhu, N. Haldolaarachchige, J. Ryu, D. P. Young, S. Wei, Z. Guo. Synthetic process engineered polyaniline nanostructures with tunable morphology and physical properties. Polymer, 53, 2109(2012).
[69] H. Gu, J. Guo, S. Wei, Z. Guo. Polyaniline nanocomposites with negative permittivity. J. Appl. Polym. Sci., 130, 2238(2013).
[70] P. Kum-onsa, N. Phromviyo, P. Thongbai. Na1/3Ca1/3Bi1/3Cu3Ti4O12–Ni@ NiO/poly (vinylidene fluoride): Three–phase polymer composites with high dielectric permittivity and low loss tangent. Results Phys., 18, 103312(2020).