[5] Technology roadmap - Low-carbon transition in the cement industry[R]. International energy agency, April 2018, p66
[7] PLAZA M G, MARTNEZ S, RUBIERA F. CO2 capture, use, and storage in the cement industry: State of the art and expectations[J]. Energies, 2020, 13(21): 5692.
[9] YOUNG J F, BERGER R L, BREESE J. Accelerated curing of compacted calcium silicate mortars on exposure to CO2[J]. J Am Ceram Soc, 1974, 57(9): 394-397.
[10] BERGER R L, YOUNG J F, LEUNG K. Acceleration of hydration of calcium silicates by carbon dioxide treatment[J]. Nat Phys Sci, 1972, 240(97): 16-18.
[11] BUKOWSKI J M, BERGER R L. Reactivity and strength development of CO2 activated non-hydraulic calcium silicates[J]. Cem Concr Res, 1979, 9(1): 57-68.
[12] RENFORTH P, WASHBOURNE C L, TAYLDER J, et al. Silicate production and availability for mineral carbonation[J]. Environ Sci Technol, 2011, 45(6): 2035-2041.
[13] KREVOR S C M, LACKNER K S. Enhancing serpentine dissolution kinetics for mineral carbon dioxide sequestration[J]. Intl J Green Gas Control, 2011, 5(4): 1073-1080.
[14] WANG T, YI Z W, GUO R N, et al. Particle carbonation kinetics models and activation methods under mild environment: The case of calcium silicate[J]. Chem Eng J, 2021, 423(23): 130157.
[15] MIN Y J, JUN Y S. Wollastonite carbonation in water-bearing supercritical CO2: Effects of water saturation conditions, temperature, and pressure[J]. Chem Geol, 2018, 483: 239-246.
[16] OLAJIRE A A. A review of mineral carbonation technology in sequestration of CO2[J]. J Petrol Sci Eng, 2013, 109: 364-392.
[17] SILVA P D, BUCEA L, MOOREHEAD D R, et al. Carbonate binders: Reaction kinetics, strength and microstructure[J]. Cem Concr Compos, 2006, 28(7): 613-620.
[18] MU Y, LIU Z, WANG F. Comparative study on the carbonation activated calcium silicates as sustainable binders: Reactivity, mechanical performance and microstructure[J]. ACS Sustain Chem Eng, 2019, 7(7): 7058-7070.
[19] MO L, PANESAR D K. Accelerated carbonation-A potential approach to sequester CO2 in cement paste containing slag and reactive MgO[J]. Cem Concr Compos, 2013, 43: 69-77.
[20] DUNG N T, UNLUER C. Development of MgO concrete with enhanced hydration and carbonation mechanisms[J]. Cem Concr Res, 2018, 103: 160-169.
[21] UNLUER C, AL-TABBAA A. Enhancing the carbonation of MgO cement porous blocks through improved curing conditions[J]. Cem Concr Res, 2014, 59: 55-65.
[22] RUAN S, UNLUER C. Comparative life cycle assessment of reactive MgO and Portland cement production[J]. J Clean Prod, 2016, 137(20): 258-273.
[24] GERDEMANN S J, O'CONNOR W K, DAHLIN D C, et al. Ex situ aqueous mineral carbonation[J]. Environ Sci Technol, 2007, 41(7): 2587-2593.
[25] KWAK J H, HU J, HOYT D W, et al. Metal carbonation of forsterite in supercritical CO2 and H2O using solid state 29Si, 13C NMR spectroscopy[J]. J Phys Chem C, 2010, 114(9): 4126-4134.
[26] MAROTO-VALER M M, FAUTH D J, KUCHTA M E, et al. Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration[J]. Fuel Process Technol, 2005, 86(14/15): 1627-1645.
[27] LIN P C, HUANG C W, HSIAO C T, et al. Magnesium hydroxide extracted from a magnesium-rich mineral for CO2 sequestration in a gas-solid system[J]. Environ Sci Technol, 2008, 42(8): 2748-2752.
[28] HUIJGEN W, RUIJG G J, COMANS R, et al. Energy consumption and net CO2 sequestration of aqueous mineral carbonation[J]. Ind Eng Chem Res, 2006, 45(26): 9184-9194.
[29] BAL P, TURIANICOV E, FABIN M, et al. Structural changes in olivine (Mg, Fe) 2SiO4 mechanically activated in high-energy mills[J]. Int J Mineral Process, 2008, 88(1/2): 1-6.
[32] GROVES G W. Phase transformations in dicalcium silicate[J]. J Mater Sci, 1983, 18(6): 1615-1624.
[33] MILANI S, COMBONI D, LOTTI P, et al. Crystal structure evolution of CaSiO3 polymorphs at earth’s mantle pressures[J]. Minerals, 2021, 11(6): 652.
[34] DAMBRAUSKAS T, BALTAKYS K, EISINAS A, et al. A study on the thermal stability of kilchoanite synthesized under hydrothermal conditions[J]. J Therm Anal Calorim, 2017, 127(1): 229-238.
[35] AGRELL S O, GAY P. Kilchoanite, a polymorph of rankinite[J]. Nature, 1961, 189(4766): 743.
[36] SMIGELSKYTE A, SIAUCIUNAS R, HILBIG H, et al. Carbonated rankinite binder: effect of curing parameters on microstructure, strength development and durability performance[J]. Sci Rep, 2020, 10(1): 14462.
[37] WANG K, REN L, YANG L. Excellent carbonation behavior of rankinite prepared by calcining the C-S-H: Potential recycling of waste concrete powders for prefabricated building products[J]. Materials, 2018, 11(8): 1474.
[38] ZHANG H, CHEN J, SHAO R, et al. The usage of rankinite for carbon capture and storage and carbonation kinetics[J]. Energ Source, Part A, 2018, 40(13): 1629-1646.
[39] LIU S, ZHANG L, XUAN D, et al. Enhanced carbonation reactivity of wollastonite by rapid cooling process: Towards an ultra-low calcium CO2 sequestration binder[J]. Constr Build Mater, 2021, 299: 124336.
[40] LI Z, HE Z, SHAO Y. Early age carbonation heat and products of tricalcium silicate paste subject to carbon dioxide curing[J]. Materials, 2018, 11(5): 730.
[41] WANG T, HUANG H, HU X, et al. Accelerated mineral carbonation curing of cement paste for CO2 sequestration and enhanced properties of blended calcium silicate[J]. Chem Eng J, 2017, 323: 320-329.
[42] ASHRAF W, OLEK J. Carbonation behavior of hydraulic and non-hydraulic calcium silicates: potential of utilizing low-lime calcium silicates in cement-based materials[J]. J Mater Sci, 2016, 51(13): 6173-6191.
[43] MU Y, LIU Z, WANG F, et al. Carbonation characteristics of γ-dicalcium silicate for low-carbon building material[J]. Constr Build Mater, 2018, 177: 322-331.
[45] MORSE J W, ARVIDSON R S, LTTGE A. Calcium carbonate formation and dissolution[J]. Chem Rev, 2007, 107(2): 342-381.
[46] CHANG R, CHOI D, KIM M H, et al. Tuning crystal polymorphisms and structural investigation of precipitated calcium carbonates for CO2 mineralization[J]. ACS Sustain Chem Eng, 2017, 5(2): 1659-1667.
[47] CHANG R, KIM S, LEE S, et al. Calcium carbonate precipitation for CO2 storage and utilization: A review of the carbonate crystallization and polymorphism[J]. Front Energy Res, 2017, 5: 17.
[48] ZHOU G T, YAO Q Z, FU S Q, et al. Controlled crystallization of unstable vaterite with distinct morphologies and their polymorphic transition to stable calcite[J]. Eur J Mineral, 2010, 22(2): 259-269.
[49] GRUVER R M. Differential thermal-analysis studies of ceramic materials: I, characteristic heat effects of some carbonates[J]. J Am Ceram Soc, 1950, 33(3): 96-101.
[50] SANTOS R M, CEULEMANS P, VAN GERVEN T. Synthesis of pure aragonite by sonochemical mineral carbonation[J]. Chem Eng Res Design, 2012, 90(6): 715-725.
[51] ZHAO S, LIU Z, WANG F, et al. Effect of extended carbonation curing on the properties of γ-C2S compacts and its implications on the multi-step reaction mechanism[J]. ACS Sustain Chem Eng, 2021, 9(19): 6673-6684.
[52] MU Y, LIU Z, WANG F, et al. Effect of barium doping on carbonation behavior of γ-C2S[J]. J CO2 Util, 2018, 27: 405-413.
[53] ZHAO S, LIU Z, MU Y, et al. Effect of chitosan on the carbonation behavior of γ-C2S[J]. Cem Concr Compos, 2020, 111: 103637.
[54] KHAN R I, ASHRAF W, OLEK J. Amino acids as performance- controlling additives in carbonation-activated cementitious materials[J]. Cem Concr Res, 2021, 147: 106501.
[55] ZHAO S, LIU Z, WANG F. Carbonation reactivity enhancement of γ-C2S through biomineralization[J]. J CO2 Util, 2020, 39: 101183.
[56] GUAN X, LIU S, FENG C, et al. The hardening behavior of γ-C2S binder using accelerated carbonation[J]. Constr Build Mater, 2016, 114: 204-207.
[59] FANG Y, CHANG J, SHANG X. The role of β-C2S and γ-C2S in carbon capture and strength development[J]. Mater Struct, 2016, 49(10): 4417-4424.
[60] ZHANG H, CHEN J, SHAO R, et al. The usage of rankinite for carbon capture and storage and carbonation kinetics[J]. Energy Sources, Part A: Recovery, Util Environ Effects, 2018, 40(13): 1629-1646.
[61] SMIGELSKYTE A, SIAUCIUNAS R, HILBIG H, et al. Carbonated rankinite binder: effect of curing parameters on microstructure, strength development and durability performance[J]. Sci Rep, 2020, 10(1): 14462.
[62] WANG K, REN L, YANG L. Excellent carbonation behavior of rankinite prepared by calcining the CSH: Potential recycling of waste concrete powders for prefabricated building products[J]. Materials, 2018, 11(8): 1474.
[64] LIU S, ZHANG L, XUAN D, et al. Enhanced carbonation reactivity of wollastonite by rapid cooling process: Towards an ultra-low calcium CO2 sequestration binder[J]. Constr Build Mater, 2021, 299: 124336.
[65] ZHANG C, LIU S, LUO S, et al. Effects of sodium doping on carbonation behavior of α-CS[J]. Cem Concr Compos, 2022: 104607.
[66] ASHRAF W, OLEK J, JAIN J. Microscopic features of non-hydraulic calcium silicate cement paste and mortar[J]. Cem Concr Res, 2017, 100: 361-372.
[67] ASHRAF W, OLEK J. Carbonation activated binders from pure calcium silicates: Reaction kinetics and performance controlling factors[J]. Cem Concr Compos, 2018, 93: 85-98.
[68] CAMERINI R, POGGI G, CHELAZZI D, et al. The carbonation kinetics of calcium hydroxide nanoparticles: A Boundary Nucleation and Growth description[J]. J Colloid Interface Sci, 2019, 547: 370-381.
[69] HOU G, CHEN J, LU B, et al. Composition design and pilot study of an advanced energy-saving and low-carbon rankinite clinker[J]. Cem Concr Res, 2020, 127: 105926.
[70] TAYLOR H F W. Cement chemistry[M]. London: Thomas Telford, 1997.
[71] LV C, LIU Z, WANG F, et al. Phase evolution and pulverization mechanism of self-pulverizing carbonatable clinkers[J]. J Am Ceram Soc, 2022, 106(2): 1391-1412.
[72] RIMAN R E, GUPTA S, ATAKAN V, et al. Bonding element, bonding matrix and composite material having the bonding element, and method of manufacturing thereof[P]. US20130122267A1. 2013.