• Matter and Radiation at Extremes
  • Vol. 8, Issue 1, 014405 (2023)
Wei Liu1, Qing Jia1、a), and Jian Zheng1、2
Author Affiliations
  • 1Department of Plasma Physics and Fusion Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
  • 2Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
  • show less
    DOI: 10.1063/5.0120072 Cite this Article
    Wei Liu, Qing Jia, Jian Zheng. Inverse Faraday effect of weakly relativistic full Poincaré beams in plasma[J]. Matter and Radiation at Extremes, 2023, 8(1): 014405 Copy Citation Text show less

    Abstract

    The inverse Faraday effect (IFE), which usually refers to the phenomenon in which a quasi-static axial magnetic field is self-generated when a circularly polarized beam propagates in a plasma, has rarely been studied for lasers with unconventional polarization states. In this paper, IFE is reconsidered for weakly relativistic full Poincaré beams, which can contain all possible laser polarization states. Starting from cold electron fluid equations and the conservation of generalized vorticity, a self-consistent theoretical model combining the nonlinear azimuthal current and diamagnetic current is presented. The theoretical results show that when such a laser propagates in a plasma, an azimuthally varying quasi-static axial magnetic field can be generated, which is quite different from the circularly polarized case. These results are qualitatively and quantitatively verified by three-dimensional particle-in-cell simulations. Our work extends the theoretical understanding of the IFE and provides a new degree of freedom in the design of magnetized plasma devices.

    I. INTRODUCTION

    In laser plasma physics, quasi-static self-generated magnetic fields play important roles in particle acceleration,1–4 photon emission,5 laser fusion,6–10 and other high-energy-density processes.11–14 Among the mechanisms for the generation of quasi-static magnetic fields, the inverse Faraday effect (IFE) is of particular importance. The IFE usually refers to the phenomenon in which a quasi-static axial magnetic field is self-generated when a circularly polarized beam propagates in a plasma. Since its first observation in a plasma,15 the IFE has been widely studied, and a number of explanations of this phenomenon have been proposed.16–30

    In early work, IFE was explained using a magnetic dipole moment model,16 in which the strength of the magnetic field is proportional to the electron number density, since electron motion is circular in a circularly polarized laser. This phenomenological model was developed further through the incorporation of collisionless cold electron fluid equations.17–21 According to this nonlinear beating current model, when the electromagnetic waves are circularly polarized, the gradients in both plasma density and laser intensity will result in a nonlinear azimuthal current,17 which leads to the generation of an axial magnetic field. When the electromagnetic waves are linearly polarized, this current will disappear, and no magnetic field will be generated. Since this nonlinear azimuthal current is generated by the electron quiver velocity beating with the high-frequency density perturbation, the generated magnetic field will dissipate quickly when the laser is no longer present. In Refs. 1820, the effect of the diamagnetic current was taken into account through the introduction of conservation of generalized vorticity.31 The results of the nonlinear beating current model were compared with those of particle-in-cell (PIC) simulations in Ref. 21.

    When laser absorption and the accompanying angular momentum (AM) transfer are taken into account, it is found that linearly polarized beams can also lead to the generation of axial magnetic fields,22 in contrast to the predictions of the nonlinear beating current model. It is known that a circularly polarized laser carries spin angular momentum (SAM).32 When electromagnetic waves are absorbed by a plasma, the SAM of the waves will be transferred to the plasma, leading to the generation of an axial magnetic field.23–26 As pointed out by Allen et al.,33 laser beams with Laguerre–Gaussian (LG) modes carry orbital angular momentum (OAM), and Ali et al.22 explained how the axial magnetic field was generated due to OAM transfer during laser absorption. Recent advances in laser technology34–38 have enabled the production of laser beams possessing intense OAM, which, with account taken of laser absorption, indicates that there is significant self-generation of magnetic fields by these LG beams.27–30,39 Nuter et al.29 found that when an intense (1018 W/cm2) radially polarized laser propagates in a plasma, the AM of the laser can be transferred to the plasma without any dissipative effect, and a megagauss quasi-static axial magnetic field can be generated. This nondissipative AM absorption was further found to be caused by a process resembling direct laser acceleration, which is significant for intense lasers.39 Longman and Fedosejevs30 explored the spatial and temporal evolutions of magnetic fields driven by ultrahigh-intensity (1020 W/cm2) beams carrying AM, and demonstrated the generation of kilotesla magnetic fields that persisted for several picoseconds after the laser had left the plasma.

    In comparison, the nonlinear beating current mechanism18–20 may be dominant in the presence of large plasma density gradients, such as in plasma channels,19 and the IFE mechanism based on AM absorption22,23,25,26 may become important when significant AM is transferred from laser beam to plasma.29,30 It should be noted that almost all the previous studies27–30 of magnetic fields generated by LG beams were based on AM absorption theory, with little attention being paid to the nonlinear beating current model.18–20 It is unclear whether LG beams can generate axial magnetic fields when AM absorption is negligible. Besides, laser beams can possess unconventional polarization states, as in the case of full Poincaré (FP) beams,40–43 which contain all the possible laser polarization states on the surface of the Poincaré sphere. We are interested in whether such a laser can generate an axial magnetic field when propagating in a plasma, and the possible distribution of the magnetic field as well as its relation to the polarization states is also of interest.

    In this paper, based on the nonlinear beating current model,18–20 the IFE of weakly relativistic linearly and circularly polarized LG beams is reconsidered, and the IFE of weakly relativistic FP beams is investigated in detail. Starting from the cold electron fluid equations and the conservation of generalized vorticity, an integrated theoretical model that takes into account the polarization states and LG modes is developed. The theoretical results show that for linearly polarized LG beams, no axial magnetic field can be generated. For circularly polarized LG beams, although axial magnetic fields can be generated, these fields are related only to the laser intensity, not to the helical phase structure of the LG beams. For FP beams that can be constructed by applying different azimuthal modes of LG beams on the two orthogonal polarizations,40 azimuthally varying axial magnetic fields can be generated, which is quite different from the circularly polarized case. The structures of such magnetic fields are affected mainly by the LG mode difference Δl and the initial phase difference Δφ of the two orthogonally polarized beams forming the FP beam. We also perform three-dimensional (3D) PIC simulations. To enable accurate comparisons of the simulation and theoretical results and keep other IFE mechanisms out of play, special care is taken in making the following choices of parameters: a long pulse with moderate intensity (5 × 1016 W/cm2) is considered to interact with a cold plasma (10 eV, 1.1 × 1020 cm−3), with the effects of collisions and parametric instabilities being neglected. The simulation results verify the theoretical results in terms of the distribution of magnetic fields, the distribution of source currents, and the conservation of generalized vorticity. In addition, it is noted that an axial magnetic field with arbitrary azimuthal distribution can be obtained if the polarization distribution of the constituent laser is properly designed using the linear superposition method. This provides a new azimuthal degree of freedom for magnetized plasma devices.37,44–46

    The rest of the paper is organized as follows. In Sec. II, the theoretical model and corresponding results are given. In Sec. III, 3D PIC simulations are conducted to verify the corresponding theoretical results. In Sec. IV, we provide an intuitive explanation of these results and demonstrate a method for obtaining an arbitrary azimuthal distribution of the axial magnetic field. Conclusions are presented in Sec. V.

    II. THEORETICAL MODEL

    Electromagnetic waves propagating in the x direction can be expressed as EL = g(xct)[Ey(x, y, z)ey + Ez(x, y, z)ez]exp[i(k0xω0t)], where k0 and ω0 are the laser wavenumber and frequency in vacuum, respectively, c is the speed of light in vacuum, g(xct) is the laser temporal envelope and is assumed to be constant, Ey,z(x, y, z) are the complex amplitudes with their respective polarizations, and ey,z are the unit vectors in the y, z directions. The laser pulse duration is assumed to be shorter than ωpi1 (where ωpi is the ion plasma frequency), so that the motion of ions can be neglected, and longer than ωpe1 (where ωpe is the electron plasma frequency), so that the longitudinal variation can be neglected. The laser beams are assumed to be weakly relativistic |Ey,z|/E0 ≪ 1 (E0 = meω0c/e, where me is the electron mass and e is the elementary charge), so that the AM absorption described in Refs. 29, 30, and 39 can be ignored (a detailed discussion is provided in the Appendix).

    We begin with the cold relativistic electron fluid equations and Maxwell equationsnt+(nu)=0,t+u(γ0meu)=e(E+u×B),×B=μ0ε0Etμ0neu,E=eε0(n0n),where n and u are the electron number density and velocity, respectively, E and B are the electric and magnetic fields, respectively, n0 is the ion number density, which is equal to the initial electron number density for H-like plasmas, and γ01+|EL|2/(2E02) is the Lorentz factor averaged over the laser period. These variables can be decomposed into relatively low- and high-frequency (laser frequency) components, which are denoted by subscripts s and f, respectively.

    The low-frequency component of Eq. (3) describes the generation of the quasi-static magnetic fields and can be written as×Bs=μ0ε0Estμ0enfufμ0ensus.Here, the angle brackets represent averaging over the laser period. The right-hand side of Eq. (5) indicates three possible sources for the generation of a quasi-static magnetic field. Es in the first term comes mainly from the charge separation field caused by the laser ponderomotive force. When the laser propagates steadily, this electric field hardly changes with time, and the first term can therefore be ignored. In the second term, Jnl = −enfuf⟩ is a second-order nonlinear current as described in Refs. 1721. The third term Jdm = −ensus represents the diamagnetic current resulting from the diamagnetic effect in response to the magnetic field generated by the nonlinear current in the second term. Applying conservation of generalized vorticity31 and combining the high-frequency components of Eqs. (1)(3), we can obtain the form of Jnl and the differential equation satisfied by Jdm, from which the distribution of the self-generated magnetic field can be calculated accordingly.

    First, Jnl can be obtained from the high-frequency components of Eqs. (1)(3), which can be written asnft+(nsuf)=0,γ0meuft=e(Ef+uf×Bs),×Bf=μ0ε0Eftμ0nseuf.Since the laser is weakly relativistic and the quasi-static self-generated magnetic field Bs is much weaker than the laser magnetic field, the high-frequency electron velocity satisfies |uf/c| ≪ 1 and |uf × Bs|/|Ef| = |ufBs|/|cBf| ≪ 1. Thus, ufeEf/(0γ0me) is obtained from Eq. (7). In addition, because the plasma is underdense, the amplitude of the laser field approaches that in vacuum, EfEL. Equation (6) then gives nf=e(ns/γ0)EL/(meω02). Neglecting diffractive and refractive effects on the laser, we obtain Jnl in a cylindrical coordinate system asJnl=enfuf=e3(EyEz*Ey*Ez)4iγ0me2ω03rnsγ0eθ,where the asterisk * indicates the complex conjugate, and ns=n0+npond=n0+ε0(|EL|2/γ0)/(4meω02), with npond being the density fluctuation induced by the laser ponderomotive force. Thus, if Jnl exists, it contains only a eθ component, which means that the self-generated magnetic field is mainly along the axis. For a weakly relativistic laser propagating in an initially uniform plasma, npond is usually relatively small, resulting in a self-generated magnetic field that is too weak to be detected in simulations. However, if there is an initial large density gradient ∂n0/∂r, the self-generated magnetic field can be significantly enhanced. In the following analysis, an initial nonuniform electron density will be applied to facilitate a clearer demonstration of the quasi-static magnetic field.

    The other key current Jdm is determined mainly by us. Since us is generated together with the magnetic field, it should be self-consistently calculated from the integral equation, taking account of the conservation of generalized vorticity. The electromagnetic fields E and B can be expressed in terms of potential fields A and φ as E = −A/∂t − ∇φ and B = ∇ × A. Then, Eq. (2) can be rewritten as (γ0meueA)/∂t = ∇(mec2γ) + u × [∇ × (γ0meueA)], from which it follows that ω/∂t = ∇ × (u × ω), where ω = ∇ × (γ0meueA) is the generalized vorticity. Then, ω = 0 is always satisfied when we set the initial vorticity as zero in our model. The low-frequency part of ω gives×(γ0meus)=eBs.Equation (10) is the differential equation satisfied by us, which can be used to calculate Jdm. It will be shown in the subsequent PIC simulations that this current always tends to weaken the magnetic field generated by Jnl, which is why Jdm is regarded as a diamagnetic current.

    Combining Eqs. (5), (9), and (10) and eliminating us, we finally obtain the equation describing the generation of the axial magnetic field:×γ0ns×Bs+μ0e2meBs=μ0×γ0nsJnl.From Eq. (11), it can be seen that the distribution of Bs is determined mainly by Jnl and ns. Once ns and EL are known, the quasi-static axial self-generated magnetic field can be calculated.18,20

    The above analysis is applicable to laser beams with different distributions and polarizations. In this paper, we focus mainly on laser beams with LG modes. Near the focal plane (x = 0), the complex amplitude of LG beams with p = 0 (where p is the radial index) can be written asELG/E0=a0h(r)exp(ilθ+iφ)=a0Clrw0|l|expr2w02exp(ilθ+iφ),where h(r)=Cl(r/w0)|l|exp(r2/w02) is the beam radial distribution, l (=0, ±1, ±2, …) is the azimuthal index, r=y2+z2, θ = arctan(z/y), φ is the initial phase, a0 is the dimensionless laser amplitude, and w0 is the waist radius on the focal plane. Cl is a constant that ensures that different l modes of LG beams have the same maximum amplitude: C0 = 1, and Cl = (2e/|l|)||/2 when l ≠ 0. LG beams have two unique features: one is the hollow amplitude distribution represented by (r/w0)|l|exp(r2/w02), and the other is the helical phase structure represented by exp(ilθ).

    For linearly polarized LG beams, EyLG/EzLG=const. Equation (9) then gives Jnl = 0, which means that no axial magnetic field can be generated. For circularly polarized LG beams, EL can be written as EzLG=EyLGexp(iσxπ/2), where σx = ±1 represents right/left-hand circular polarization. Equation (9) can then be rewritten asJnl=σxe3|EyLG|22γ0me2ω03rnsγ0eθ.The sign of Jnl is determined by σx, which indicates that the direction of the self-generated axial magnetic field is opposite for different circular polarizations. The main features of the IFE given by this theory for LG beams are essentially consistent with those given in Refs. 17, 18, and 20 for linearly and circularly polarized Gaussian beams. These results are also demonstrated by 3D PIC simulations for Gaussian and LG beams in the Appendix.

    The magnetic fields shown above are related only to the laser intensity |EyLG|2, not to the helical index l. To introduce this helical index, we consider the case of FP beams,40 which can be constructed by applying different |l| modes of LG beams on the two orthogonal polarizations Ey,z/E0=Ey,zLG/E0=ay,zhy,z(r)exp(ily,zθ+iφy,z). Then, Eq. (9) can be rewritten asJnl=e3E02ayazhy(r)hz(r)2γ0me2ω03rnsγ0sin(θΔl+Δφ)eθ,where Δl = lylz and Δφ = φyφz. When Δl ≠ 0, Eq. (14) implies that Jnl varies with θ, which indicates that the self-generated magnetic field will also be associated with the azimuth θ. This feature is extremely different from the circular polarization case.

    Figures 1(a)1(d) display the transverse distributions of quasi-static axial magnetic fields calculated from Eqs. (11) and (14) for lasers with different polarization states propagating in a plasma. The initial density profile of the plasma is n0,0=niniexp[(r/rCH)6], where nini = 0.1nc and rCH = 4λ. Figure 1(a) shows the distribution of the axial magnetic field generated by a circularly polarized LG laser (ly = −1, lz = −1, and Δφ = −π/2), which is cylindrically symmetrical. Figure 1(b) shows the distribution of the axial magnetic field generated by a laser with ly = 1, lz = −1, and Δφ = −π/2. It can be seen that at a given r, the sign of the magnetic field changes four times as θ increases from 0 to 2π. Figure 1(c) shows the case for a laser with ly = 1, lz = −1, and Δφ = 0. Compared with Fig. 1(b), the magnetic field rotates through a certain angle around the axis, which demonstrates that the azimuthal distribution of the axial magnetic field can be changed by changing Δφ. Figure 1(d) shows the distribution of the magnetic field for a laser with ly = 2, lz = −1, and Δφ = 0, where the sign of the magnetic field changes six times azimuthally. The number of periodic changes in direction of the axial magnetic field is N = 2Δl, in accordance with that indicated in Eq. (14).

    Transverse distributions of the quasi-static axial self-generated magnetic fields (normalized by B0 = meω0/e) obtained from (a)–(d) the theoretical model and (e)–(h) 3D PIC simulations for lasers with different polarization states propagating in a plasma. The lasers have (a) and (e) ly = 1, lz = 1, Δφ = −π/2; (b) and (f) ly = 1, lz = −1, Δφ = −π/2; (c) and (g) ly = 1, lz = −1, Δφ = 0; (d) and (h) ly = 2, lz = −1, Δφ = 0. The electron number density n0,0=niniexp[−(r/rCH)6], where nini = 0.1nc and rCH = 4λ. For all the lasers, ay = az = 0.2 and w0y = w0z = 4λ.

    Figure 1.Transverse distributions of the quasi-static axial self-generated magnetic fields (normalized by B0 = meω0/e) obtained from (a)–(d) the theoretical model and (e)–(h) 3D PIC simulations for lasers with different polarization states propagating in a plasma. The lasers have (a) and (e) ly = 1, lz = 1, Δφ = −π/2; (b) and (f) ly = 1, lz = −1, Δφ = −π/2; (c) and (g) ly = 1, lz = −1, Δφ = 0; (d) and (h) ly = 2, lz = −1, Δφ = 0. The electron number density n0,0=niniexp[(r/rCH)6], where nini = 0.1nc and rCH = 4λ. For all the lasers, ay = az = 0.2 and w0y = w0z = 4λ.

    By constructing different l modes of LG beams on the two orthogonal polarizations, we introduce the helical index of LG beams into the magnetic field generation, which is reflected by azimuthal variation of the magnetic field. It is demonstrated that the distribution of the magnetic field is affected mainly by Δl and Δφ, which is quite different from the azimuthally homogeneous magnetic field generated by circular polarization. In Sec. III, we verify the above theoretical results by 3D PIC simulations.

    III. 3D PIC SIMULATIONS

    We perform a series of 3D kinetic simulations using the fully relativistic PIC code EPOCH.47 The main simulation parameters are the same as those used in the above theoretical analysis. The laser propagates in the x direction with wavelength λ = 1 µm. Its intensity remains constant after reaching the maximum ay = az = 0.2 in three laser periods. The radius of the waist of the LG beams in the PIC simulations is w0,y = w0,z = 4 µm. The simulation box is 10 µm (x) × 20 µm (y) × 20 µm (z), with 500 × 320 × 320 cells. For the electrons, 100 particles are applied per cell, and the ions are set to be immobile. The plasma is located at 2 < x < 8 µm. The distribution of the initial electron number density is n0,0=niniexp[(r/rCH)6], where nini = 0.1nc and rCH = 4λ. The initial electron temperature is 10 eV.

    Figures 1(e)1(h) show the transverse distributions of the quasi-static axial magnetic fields obtained in PIC simulations for different modes of lasers propagating in a plasma at t = 66.67 fs. The quasi-static magnetic fields and the related azimuthal currents are obtained by averaging the instantaneous magnetic fields and currents over two laser periods (60 < t < 66.67 fs) and then averaging along the laser propagation direction. The distributions of the axial magnetic fields given by the 3D PIC simulations shown in Figs. 1(e)1(h) are quantitatively in good agreement with those given by the theoretical model in Figs. 1(a)1(d).

    Furthermore, we examine the theoretical model in detail by confirming the distribution of the azimuthal components of currents Jnl and Jdm. The parameters are the same as those in Fig. 1(b). The theoretical Jnl,θt obtained from Eq. (14) and Jdm,θt calculated by Jdm,θt=(1/μ0)Bx/rJnl,θt are presented in Fig. 2(a) and 2(b). Figures 2(c) and 2(d) present the transverse distributions of Jnl,θs and Jdm,θs obtained in the corresponding PIC simulation of Fig. 1(f). Jdm,θs is diagnosed by Jdm,θs=nesJθs/nes, where nes and Jθs are the electron number density and the total azimuthal current in every simulation time step, respectively, and the angle brackets represent averaging over two laser periods (a total of 120 time steps). Then, Jnl,θs is obtained by Jnl,θs=JθsJdm,θs. It is obvious that the theoretical results are in good agreement with those obtained from PIC simulations for both Jnl,θ and Jdm,θ. In addition, the sign of Jdm,θ is always opposite to that of Jnl,θ, as can be seen from a comparison of Fig. 2(c) and 2(d). This reflects the property of Jdm as a diamagnetic current.

    Transverse distributions of different azimuthal currents (normalized by J0 = ncec): (a) Jnl,θt from the theoretical model; (b) Jdm,θt from the theoretical model; (c) Jnl,θs from the PIC simulation; (d) Jdm,θs from the PIC simulation. The laser parameters are ly = 1, lz = −1, Δφ = −π/2, ay = az = 0.2, and w0y = w0z = 4λ. The electron number density n0,0=niniexp[−(r/rCH)6], where nini = 0.1nc and rCH = 4λ.

    Figure 2.Transverse distributions of different azimuthal currents (normalized by J0 = ncec): (a) Jnl,θt from the theoretical model; (b) Jdm,θt from the theoretical model; (c) Jnl,θs from the PIC simulation; (d) Jdm,θs from the PIC simulation. The laser parameters are ly = 1, lz = −1, Δφ = −π/2, ay = az = 0.2, and w0y = w0z = 4λ. The electron number density n0,0=niniexp[(r/rCH)6], where nini = 0.1nc and rCH = 4λ.

    The assumption of generalized vorticity conservation in the theoretical model can also be verified by the PIC simulations. This conservation law indicates that if the generalized vorticity is initially zero, ω = 0, it will remain zero throughout the subsequent evolution. In the PIC simulation setups, the initial zero-vorticity condition is satisfied. Therefore, the axial magnetic field can be calculated in another way by using the us given by the PIC simulations through Eq. (10), in addition to the purely theoretical calculation using Eq. (11) and the direct diagnosis by PIC simulation as shown in Fig. 1. Figure 3 compares the axial magnetic fields obtained in these three ways. The black line shows the quasi-static magnetic field given directly by the PIC simulations, the red line shows the results from the theoretical model corresponding to those in Figs. 1(a)1(d), and the green line shows the results calculated from conservation of generalized vorticity using the us data from the PIC simulations. It can be seen that the lines overlap well with each other, which proves good conservation of zero vorticity.

    Magnetic field (normalized by B0 = meω0/e) distributions (a) along y = 0 and (b) along θ at r = 3λ. The black line shows the results of the PIC simulations, the red line those of the theoretical model, and the green line those calculated from conservation of generalized vorticity. The laser parameters are ly = 1, lz = −1, Δφ = −π/2, ay = az = 0.2, and w0y = w0z = 4λ. The electron number density n0,0=niniexp[−(r/rCH)6], where nini = 0.1nc, and rCH = 4λ.

    Figure 3.Magnetic field (normalized by B0 = meω0/e) distributions (a) along y = 0 and (b) along θ at r = 3λ. The black line shows the results of the PIC simulations, the red line those of the theoretical model, and the green line those calculated from conservation of generalized vorticity. The laser parameters are ly = 1, lz = −1, Δφ = −π/2, ay = az = 0.2, and w0y = w0z = 4λ. The electron number density n0,0=niniexp[(r/rCH)6], where nini = 0.1nc, and rCH = 4λ.

    IV. DISCUSSION

    We have constructed a self-consistent theoretical model for calculating the axial magnetic field induced by the nonlinear azimuthal current and the diamagnetic current. The soundness of this model has been comprehensively verified through 3D PIC simulations in terms of the distributions of magnetic fields and the source currents, as well as the conservation of generalized vorticity. Here, in the framework of the electron magnetic momentum model,16 we present an intuitive explanation of why these magnetic fields vary with azimuth θ.

    Figure 4(a) shows the intensity distribution on the focal plane for a laser with ly = 1, lz = −1, and Δφ = −π/2, together with the polarization state distribution marked by the small ellipses. The white and green ellipses represent left- and right-handed laser polarization states, respectively. The laser polarization changes azimuthally, which indicates different electron motions at different azimuths. Figures 4(b)4(e) present the trajectories of electrons in this laser for one laser period T0 near the red points in Fig. 4(a). The characteristic scale length of electron motion is about 0.06λ, which indicates that the electrons mainly move locally, owing to the relatively low laser intensity. On θ = arctan(z/y) = π/4 and 3π/4, the laser can be regarded as linearly polarized, and the electrons oscillate along a certain direction [shown in Fig. 4(c) and 4(e)]. On θ = 0 and π/2, the laser can be viewed as circularly polarized, and the electrons move circularly, as shown in Fig. 4(b) and 4(d). It is found that on θ = 0, the direction of circular movement is opposite to that on θ = π/2, which indicates that the directions of the magnetic fields generated by the magnetic dipole moments are opposite for θ = 0 and θ = π/2. The variation of the axial magnetic field on other azimuths can be analyzed similarly.

    (a) Distribution of laser intensity with laser parameters ly = 1, lz = −1, Δφ = −π/2, ay = az = 0.2, and w0y = w0z = 4λ. White and green ellipses represent laser polarization states that are left- and right-handed, respectively. (b)–(e) Trajectories of electrons in this laser for one laser period near (r, θ) = (2.8λ, 0), (2.8λ, π/4), (2.8λ, π/2), and (2.8λ, 3π/4), respectively, marked by the red points in (a). The color change from blue to red indicates the time evolution.

    Figure 4.(a) Distribution of laser intensity with laser parameters ly = 1, lz = −1, Δφ = −π/2, ay = az = 0.2, and w0y = w0z = 4λ. White and green ellipses represent laser polarization states that are left- and right-handed, respectively. (b)–(e) Trajectories of electrons in this laser for one laser period near (r, θ) = (2.8λ, 0), (2.8λ, π/4), (2.8λ, π/2), and (2.8λ, 3π/4), respectively, marked by the red points in (a). The color change from blue to red indicates the time evolution.

    In addition to the polarization distribution, Eq. (11) implies that the initial density distribution ns also plays a role. As well as the super-Gaussian density distribution n0,0 applied above, another two density profiles are also studied, and the axial magnetic fields generated are shown in Fig. 5. One density profile is a plasma channel, n0,1=nini{1exp[(r/rCH)6]}, and the other is the previous super-Gaussian density distribution superimposed on a uniform background, n0,2=nini{0.5+exp[(r/rCH)6]}. The other plasma and laser parameters are the same as those in Fig. 1(b). These results reveal that the theory and simulation results are in good agreement.

    Transverse distributions of the quasi-static axial self-generated magnetic fields (normalized by B0 = meω0/e) for different electron number density distributions: (a) and (c) n0,1=nini{1−exp[−(r/rCH)6]}; (b) and (d) n0,2=nini{0.5+exp[−(r/rCH)6]}. Here, nini = 0.1nc and rCH = 4λ. (a) and (b) show the results from the theoretical model, and (c) and (d) show the results from the 3D PIC simulations. The laser parameters are ly = 1, lz = −1, Δφ = −π/2, ay = az = 0.2, and w0y = w0z = 4λ.

    Figure 5.Transverse distributions of the quasi-static axial self-generated magnetic fields (normalized by B0 = meω0/e) for different electron number density distributions: (a) and (c) n0,1=nini{1exp[(r/rCH)6]}; (b) and (d) n0,2=nini{0.5+exp[(r/rCH)6]}. Here, nini = 0.1nc and rCH = 4λ. (a) and (b) show the results from the theoretical model, and (c) and (d) show the results from the 3D PIC simulations. The laser parameters are ly = 1, lz = −1, Δφ = −π/2, ay = az = 0.2, and w0y = w0z = 4λ.

    Note that the density gradient of n0,1 is opposite to that of n0,0, and so the corresponding nonlinear current jnl,θ is opposite according to Eq. (14), which is verified by the red solid and red dotted lines in Fig. 6. However, the magnetic field distributions in the two cases are quite similar, as can be seen by comparing Fig. 1(b) and 5(a). This suggests that the characteristics of the generated magnetic fields cannot be determined only by jnl,θ, and the diamagnetic currents jdm,θ should also be taken into account. The green solid and green dotted lines in Fig. 6 show jdm,θ corresponding to these two cases. It can be seen that jdm,θ in the n0,0 case peaks at r < rCH, whereas it peaks at r > rCH in the n0,1 case. This leads to a similar sinusoidal-like distribution of the total azimuthal current along r in both cases, as shown by the black solid and black dotted lines in Fig. 6. Considering that the magnetic field can be calculated as Bx=μ0rjθdr, it is no wonder that the distribution of the magnetic field is similar rather than opposite for these two cases. Likewise, although jnl,θ is predicted to be the same for the n0,2 and n0,0 cases (as demonstrated by the overlap of the red solid and red dashed lines in Fig. 6), the generated magnetic field distribution is rather different, because the distribution of the diamagnetic current depends on the different initial density profiles.

    Distributions of different azimuthal currents (normalized by J0 = ncec) along r at θ = π/2 (y = 0, z > 0) obtained from the theoretical model. The solid lines (case 0) show the results with the density profile n0,0=niniexp[−(r/rCH)6], the dotted lines (case I) the results with the profile n0,1=nini{1−exp[−(r/rCH)6]}, and the dashed lines the results with the profile n0,2=nini{0.5+exp[−(r/rCH)6]}. The red lines show the source current jnl,θ, the green lines the diamagnetic current jdm,θ, and the black lines the total azimuthal current jθ = jnl,θ + jdm,θ. The plasma parameters are nini = 0.1nc and rCH = 4λ. The laser parameters are ly = 1, lz = −1, Δφ = −π/2, ay = az = 0.2, and w0y = w0z = 4λ.

    Figure 6.Distributions of different azimuthal currents (normalized by J0 = ncec) along r at θ = π/2 (y = 0, z > 0) obtained from the theoretical model. The solid lines (case 0) show the results with the density profile n0,0=niniexp[(r/rCH)6], the dotted lines (case I) the results with the profile n0,1=nini{1exp[(r/rCH)6]}, and the dashed lines the results with the profile n0,2=nini{0.5+exp[(r/rCH)6]}. The red lines show the source current jnl,θ, the green lines the diamagnetic current jdm,θ, and the black lines the total azimuthal current jθ = jnl,θ + jdm,θ. The plasma parameters are nini = 0.1nc and rCH = 4λ. The laser parameters are ly = 1, lz = −1, Δφ = −π/2, ay = az = 0.2, and w0y = w0z = 4λ.

    Such unique distributions of axial magnetic fields provide a new azimuthal degree of freedom in designing magnetized plasma-based devices.37,46 It can be proved that, in principle, arbitrary distributions of axial magnetic fields in the azimuthal direction can be generated. Since the electromagnetic waves are weakly relativistic, the relativistic factor can be approximated as γ0=1+|EL|2/2E021. If the initial electron density gradient is large enough, then ∂ns/∂r∂n0/∂r. Equation (14) can then be rewritten asJnl=e3E02ayazhy(r)hz(r)2me2ω03n0rsin(θΔl+Δφ)eθ.By setting EzLG/E0=azhz(r)exp(ilzθ+iφz) and EyLG/E0=may,mhy,m(r)exp(ily,mθ+iφy,m), where m = 0, ±1, ±2, …, we can obtain Jnl = ∑mJnl,m sin(Δlmθ + Δφm)eθ, whereJnl,m=e3E02ay,mazhy,m(r)hz(r)2me2ω03n0r,Δlm=ly,mlz,Δφm=φy,mφz.This indicates that any azimuthally varying distribution of Jnl can be designed with a proper combination of Δl and Δφ, and the corresponding axial magnetic field can be manipulated.

    As a coda, we present the ladybug-like magnetic field shown in Fig. 7. It is generated by the above method using a laser with EzLG/E0=azhz(r)exp(iθ) and EyLG/E0=ay,1hy,1(r)exp(iθ)+ay,2hy,2(r)exp(2iθ). In a similar way, more complex distributions of axial magnetic field could, in principle, be designed.

    Distribution of the axial magnetic field (normalized by B0 = meω0/e) obtained from the theoretical model for a laser with EzLG/E0=azhz(r)exp(−iθ) and EyLG/E0=ay,1hy,1(r)exp(iθ)+ay,2hy,2(r)exp(2iθ). The laser parameters are az = ay,1 = ay,2 = 0.2 and wz = wy,1 = wy,2 = 4λ. The electron number density n0,0=nini⁡exp[−(r/rCH)6], where nini = 0.1nc and rCH = 4λ.

    Figure 7.Distribution of the axial magnetic field (normalized by B0 = meω0/e) obtained from the theoretical model for a laser with EzLG/E0=azhz(r)exp(iθ) and EyLG/E0=ay,1hy,1(r)exp(iθ)+ay,2hy,2(r)exp(2iθ). The laser parameters are az = ay,1 = ay,2 = 0.2 and wz = wy,1 = wy,2 = 4λ. The electron number density n0,0=niniexp[(r/rCH)6], where nini = 0.1nc and rCH = 4λ.

    It is worth noting that the results given by the theoretical model are in good agreement with those given by PIC simulations, which can be mainly attributed to three factors. First, laser absorption is negligible in our weakly relativistic (5 × 1016 W/cm2) laser plasma interaction, where the effects of collisions and parametric instabilities are neglected. Thus, AM absorption, which plays a dominant role in Refs. 29, 30, and 39, is not of concern. If the AM absorption is significant, the electrons can acquire an appreciable low-frequency velocity us. The corresponding current J = −ensus will then be another key source for the magnetic field, and the related magnetic fields depend strongly on the specific AM absorption mechanism, which is not considered in our model. Second, the ion motions are neglected in our discussion, since our model is applicable on a time scale of ωpe1<τ<ωpi1. It can be anticipated that for a longer time τ>ωpi1, the ion motions under the charge-separation field might change the transverse density distribution of the plasma and result in different magnetic field distributions according to our analysis. Finally, our model is based on the assumption of a cold plasma. If thermal effects are not negligible, then kinetic models48,49 or the ten-moment Grad system of hydrodynamic equations50 are needed for the analysis, which is beyond the scope of this work.

    V. CONCLUSION

    The inverse Faraday effect has been extended to full Poincaré beams, and a novel scheme for generating azimuthally dependent axial magnetic fields has been proposed. Starting from fluid theory and conservation of generalized vorticity, we have constructed an integrated theoretical model of the quasi-static magnetic field generated by both the nonlinear azimuthal current and the diamagnetic current. This model predicts that the self-generated axial magnetic field varies azimuthally for a full Poincaré beam propagating in a plasma. The structures of such magnetic fields are determined by the Laguerre–Gaussian mode difference Δl and the initial phase difference Δφ of the composing orthogonally polarized lasers. Three-dimensional particle-in-cell simulation results are in good agreement with the theoretical model both qualitatively and quantitatively. In addition, it is noted that an arbitrary azimuthally varying distribution of the axial magnetic field can be obtained by the linear superposition method, which provides a potential new azimuthal degree of freedom in the design of magnetized plasma devices.

    ACKNOWLEDGMENTS

    Acknowledgment. This research was supported by the National Natural Science Foundation of China (NSFC) under Grant No. 11975014 and by the Strategic Priority Research Program of Chinese Academy of Sciences under Grant Nos. XDA25050400 and XDA25010200. The numerical calculations in this paper were performed on the supercomputing system at the Supercomputing Center of the University of Science and Technology of China.

    APPENDIX: SIMULATION RESULTS OF WEAKLY RELATIVISTIC GAUSSIAN AND LG BEAMS

    PIC simulations of weakly relativistic Gaussian beam plasma interactions were performed. A comparison of the theoretical and simulation results for the magnetic field is shown in Fig. 8. The overlap between the red and black lines demonstrates the good fit between our theory and the simulation. A comparison of the blue and red lines reveals an opposite magnetic field for different circularly polarized (CP) Gaussian beams when other parameters are the same. The green line shows that the self-generated magnetic field of an linearly polarized (LP) Gaussian beam is negligible compared with the case of circular polarization. These results are consistent with theoretical expectations. For a benchmark, the electron number density is set as n0,3=nini/[1+9exp(r2/rCH2)], the same as in Ref. 21, and the magnetic field distribution shown in Fig. 8 is in agreement with that in Ref. 21.

    Distributions of axial magnetic fields (normalized by B0 = meω0/e) along y = 0 generated by different polarized Gaussian beams. The red and blue lines show the results of PIC simulation for right- and left-hand (σx = ±1) circularly polarized lasers, respectively, the black line shows the result of the theoretical model for a right-hand (σx = 1) circularly polarized laser, and the green line shows the result of PIC simulation for a linearly (σx = 0) polarized laser. The laser parameters are a0 = 0.3 and w0 = 4λ. The plasma has n0,3=nini/[1+9exp(−r2/rCH2)], where nini = 0.1nc and rCH = 2λ.

    Figure 8.Distributions of axial magnetic fields (normalized by B0 = meω0/e) along y = 0 generated by different polarized Gaussian beams. The red and blue lines show the results of PIC simulation for right- and left-hand (σx = ±1) circularly polarized lasers, respectively, the black line shows the result of the theoretical model for a right-hand (σx = 1) circularly polarized laser, and the green line shows the result of PIC simulation for a linearly (σx = 0) polarized laser. The laser parameters are a0 = 0.3 and w0 = 4λ. The plasma has n0,3=nini/[1+9exp(r2/rCH2)], where nini = 0.1nc and rCH = 2λ.

    Distributions of axial magnetic fields (normalized by B0 = meω0/e) along y = 0 generated by different LG lasers in PIC simulations. The black, red, and green lines represent the cases of a left-hand CP (σx = −1) LG laser with l = 1, a left-hand CP (σx = −1) LG laser with l = −1, and a LP (σx = 0) LG laser with l = 1, respectively. The other laser parameters are a0 = 0.2 and w0 = 4λ. The electron number density n0,0=niniexp[−(r/rCH)6], where nini = 0.1nc and rCH = 4λ.

    Figure 9.Distributions of axial magnetic fields (normalized by B0 = meω0/e) along y = 0 generated by different LG lasers in PIC simulations. The black, red, and green lines represent the cases of a left-hand CP (σx = −1) LG laser with l = 1, a left-hand CP (σx = −1) LG laser with l = −1, and a LP (σx = 0) LG laser with l = 1, respectively. The other laser parameters are a0 = 0.2 and w0 = 4λ. The electron number density n0,0=niniexp[(r/rCH)6], where nini = 0.1nc and rCH = 4λ.

    References

    [1] M.Tanimoto, M.Tanimoto, S.Kato, E.Miura, N.Saito, K.Koyama, J. and, S.Kato, M.Tanimoto, S.Kato, E.Miura, N.Saito, K.Koyama, J. and, E.Miura, M.Tanimoto, S.Kato, E.Miura, N.Saito, K.Koyama, J. and, N.Saito, M.Tanimoto, S.Kato, E.Miura, N.Saito, K.Koyama, J. and, K.Koyama, M.Tanimoto, S.Kato, E.Miura, N.Saito, K.Koyama, J. and, J. K.Koga. Direct electron acceleration by stochastic laser fields in the presence of self-generated magnetic fields. Phys. Rev. E, 68, 026401(2003).

    [2] X. H.Yuan, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, A. P. L.Robinson, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, M. N.Quinn, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, D. C.Carroll, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, M.Borghesi, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, R. J.Clarke, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, R. G.Evans, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, J.Fuchs, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, P.Gallegos, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, L.Lancia, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, D.Neely, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, K.Quinn, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, L.Romagnani, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, G.Sarri, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, P. A.Wilson, H.Yuan X., P. A., N.Quinn M., C.Carroll D., M.Borghesi, J.Clarke R., G.Evans R., J.Fuchs, P.Gallegos, L.Lancia, D.Neely, K.Quinn, L.Romagnani, G.Sarri, A.Wilson P., P.McKenna and, P.McKenna. Effect of self-generated magnetic fields on fast-electron beam divergence in solid targets. New J. Phys., 12, 063018(2010).

    [3] B.Liu, B.Liu, Y.Wang H., J.Liu, B.Fu L., J.Xu Y., Q.Yan X., X. and, H. Y.Wang, B.Liu, Y.Wang H., J.Liu, B.Fu L., J.Xu Y., Q.Yan X., X. and, J.Liu, B.Liu, Y.Wang H., J.Liu, B.Fu L., J.Xu Y., Q.Yan X., X. and, L. B.Fu, B.Liu, Y.Wang H., J.Liu, B.Fu L., J.Xu Y., Q.Yan X., X. and, Y. J.Xu, B.Liu, Y.Wang H., J.Liu, B.Fu L., J.Xu Y., Q.Yan X., X. and, X. Q.Yan, B.Liu, Y.Wang H., J.Liu, B.Fu L., J.Xu Y., Q.Yan X., X. and, X. T.He. Generating overcritical dense relativistic electron beams via self-matching resonance acceleration. Phys. Rev. Lett., 110, 045002(2013).

    [4] Z.Gong, Z.Gong, F.Mackenroth, T.Wang, Q.Yan X., T.Toncian, A. and, F.Mackenroth, Z.Gong, F.Mackenroth, T.Wang, Q.Yan X., T.Toncian, A. and, T.Wang, Z.Gong, F.Mackenroth, T.Wang, Q.Yan X., T.Toncian, A. and, X. Q.Yan, Z.Gong, F.Mackenroth, T.Wang, Q.Yan X., T.Toncian, A. and, T.Toncian, Z.Gong, F.Mackenroth, T.Wang, Q.Yan X., T.Toncian, A. and, A. V.Arefiev. Direct laser acceleration of electrons assisted by strong laser-driven azimuthal plasma magnetic fields. Phys. Rev. E, 102, 013206(2020).

    [5] D. J.Stark, J.Stark D., T.Toncian, A. and, T.Toncian, J.Stark D., T.Toncian, A. and, A. V.Arefiev. Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field. Phys. Rev. Lett., 116, 185003(2016).

    [6] M. A.Yates, A.Yates M., B.van D., H.Rutkowski, G.Kyrala, J. and, , D. B.van Hulsteyn, A.Yates M., B.van D., H.Rutkowski, G.Kyrala, J. and, , H.Rutkowski, A.Yates M., B.van D., H.Rutkowski, G.Kyrala, J. and, , G.Kyrala, A.Yates M., B.van D., H.Rutkowski, G.Kyrala, J. and, , J. U.Brackbill, A.Yates M., B.van D., H.Rutkowski, G.Kyrala, J. and, . Experimental evidence for self-generated magnetic fields and remote energy deposition in laser-irradiated targets. Phys. Rev. Lett., 49, 1702-1704(1982).

    [7] M.Tabak, M.Tabak, J.Hammer, E.Glinsky M., L.Kruer W., C.Wilks S., J.Woodworth, M.Campbell E., D.Perry M., R. and, J.Hammer, M.Tabak, J.Hammer, E.Glinsky M., L.Kruer W., C.Wilks S., J.Woodworth, M.Campbell E., D.Perry M., R. and, M. E.Glinsky, M.Tabak, J.Hammer, E.Glinsky M., L.Kruer W., C.Wilks S., J.Woodworth, M.Campbell E., D.Perry M., R. and, W. L.Kruer, M.Tabak, J.Hammer, E.Glinsky M., L.Kruer W., C.Wilks S., J.Woodworth, M.Campbell E., D.Perry M., R. and, S. C.Wilks, M.Tabak, J.Hammer, E.Glinsky M., L.Kruer W., C.Wilks S., J.Woodworth, M.Campbell E., D.Perry M., R. and, J.Woodworth, M.Tabak, J.Hammer, E.Glinsky M., L.Kruer W., C.Wilks S., J.Woodworth, M.Campbell E., D.Perry M., R. and, E. M.Campbell, M.Tabak, J.Hammer, E.Glinsky M., L.Kruer W., C.Wilks S., J.Woodworth, M.Campbell E., D.Perry M., R. and, M. D.Perry, M.Tabak, J.Hammer, E.Glinsky M., L.Kruer W., C.Wilks S., J.Woodworth, M.Campbell E., D.Perry M., R. and, R. J.Mason. Ignition and high gain with ultrapowerful lasers. Phys. Plasmas, 1, 1626-1634(1994).

    [8] R.Kodama, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, P. A.Norreys, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, K.Mima, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, A. E.Dangor, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, R. G.Evans, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, H.Fujita, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, Y.Kitagawa, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, K.Krushelnick, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, T.Miyakoshi, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, N.Miyanaga, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, T.Norimatsu, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, S. J.Rose, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, T.Shozaki, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, K.Shigemori, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, A.Sunahara, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, M.Tampo, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, K. A.Tanaka, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, Y.Toyama, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, T.Yamanaka, R.Kodama, A.Norreys P., K.Mima, E.Dangor A., G.Evans R., H.Fujita, Y.Kitagawa, K.Krushelnick, T.Miyakoshi, N.Miyanaga, T.Norimatsu, J.Rose S., T.Shozaki, K.Shigemori, A.Sunahara, M.Tampo, A.Tanaka K., Y.Toyama, T.Yamanaka, M.Zepf and, M.Zepf. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature, 412, 798-802(2001).

    [9] H.-b.Cai, H.-b.Cai, P.Zhu S., M.Chen, S.-z.Wu, T.He X., K.Mima and, S. P.Zhu, H.-b.Cai, P.Zhu S., M.Chen, S.-z.Wu, T.He X., K.Mima and, M.Chen, H.-b.Cai, P.Zhu S., M.Chen, S.-z.Wu, T.He X., K.Mima and, S.-z.Wu, H.-b.Cai, P.Zhu S., M.Chen, S.-z.Wu, T.He X., K.Mima and, X. T.He, H.-b.Cai, P.Zhu S., M.Chen, S.-z.Wu, T.He X., K.Mima and, K.Mima. Magnetic-field generation and electron-collimation analysis for propagating fast electron beams in overdense plasmas. Phys. Rev. E, 83, 036408(2011).

    [10] W. A.Farmer, A.Farmer W., M.Koning J., J.Strozzi D., E.Hinkel D., F.Berzak L., S.Jones O., M. and, J. M.Koning, A.Farmer W., M.Koning J., J.Strozzi D., E.Hinkel D., F.Berzak L., S.Jones O., M. and, D. J.Strozzi, A.Farmer W., M.Koning J., J.Strozzi D., E.Hinkel D., F.Berzak L., S.Jones O., M. and, D. E.Hinkel, A.Farmer W., M.Koning J., J.Strozzi D., E.Hinkel D., F.Berzak L., S.Jones O., M. and, L. F.Berzak Hopkins, A.Farmer W., M.Koning J., J.Strozzi D., E.Hinkel D., F.Berzak L., S.Jones O., M. and, O. S.Jones, A.Farmer W., M.Koning J., J.Strozzi D., E.Hinkel D., F.Berzak L., S.Jones O., M. and, M. D.Rosen. Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment. Phys. Plasmas, 24, 052703(2017).

    [11] E. M.Epperlein, M.Epperlein E., M. G.Haines. Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation. Phys. Fluids, 29, 1029-1041(1986).

    [12] Q.Jia, Q.Jia, K.Mima, H.-b.Cai, T.Taguchi, H.Nagatomo, X. and, K.Mima, Q.Jia, K.Mima, H.-b.Cai, T.Taguchi, H.Nagatomo, X. and, H.-b.Cai, Q.Jia, K.Mima, H.-b.Cai, T.Taguchi, H.Nagatomo, X. and, T.Taguchi, Q.Jia, K.Mima, H.-b.Cai, T.Taguchi, H.Nagatomo, X. and, H.Nagatomo, Q.Jia, K.Mima, H.-b.Cai, T.Taguchi, H.Nagatomo, X. and, X. T.He. Self-generated magnetic dipoles in weakly magnetized beam-plasma system. Phys. Rev. E, 91, 023107(2015).

    [13] J. M.Tian, M.Tian J., B.Cai H., S.Zhang W., H.Zhang E., B.Du, S. and, H. B.Cai, M.Tian J., B.Cai H., S.Zhang W., H.Zhang E., B.Du, S. and, W. S.Zhang, M.Tian J., B.Cai H., S.Zhang W., H.Zhang E., B.Du, S. and, E. H.Zhang, M.Tian J., B.Cai H., S.Zhang W., H.Zhang E., B.Du, S. and, B.Du, M.Tian J., B.Cai H., S.Zhang W., H.Zhang E., B.Du, S. and, S. P.Zhu. Generation mechanism of 100 MG magnetic fields in the interaction of ultra-intense laser pulse with nanostructured target. High Power Laser Sci. Eng., 8, E16(2020).

    [14] H.-b.Cai, H.-b.Cai, X.-x.Yan, P.-l.Yao, S.-p.Zhu and, X.-x.Yan, H.-b.Cai, X.-x.Yan, P.-l.Yao, S.-p.Zhu and, P.-l.Yao, H.-b.Cai, X.-x.Yan, P.-l.Yao, S.-p.Zhu and, S.-p.Zhu. Hybrid fluid–particle modeling of shock-driven hydrodynamic instabilities in a plasma. Matter Radiat. Extremes, 6, 035901(2021).

    [15] J.Deschamps, J.Deschamps, M.Fitaire, M.Lagoutte and, M.Fitaire, J.Deschamps, M.Fitaire, M.Lagoutte and, M.Lagoutte. Inverse Faraday effect in a plasma. Phys. Rev. Lett., 25, 1330-1332(1970).

    [16] A. D.Steiger, D.Steiger A., C. H.Woods. Intensity-dependent propagation characteristics of circularly polarized high-power laser radiation in a dense electron plasma. Phys. Rev. A, 5, 1467-1474(1972).

    [17] Z. M.Sheng, M.Sheng Z., J.Meyer-ter-Vehn. Inverse Faraday effect and propagation of circularly polarized intense laser beams in plasmas. Phys. Rev. E, 54, 1833-1842(1996).

    [18] V. I.Berezhiani, I.Berezhiani V., M.Mahajan S., N. and, S. M.Mahajan, I.Berezhiani V., M.Mahajan S., N. and, N. L.Shatashvili. Theory of magnetic field generation by relativistically strong laser radiation. Phys. Rev. E, 55, 995-1001(1997).

    [19] A.Kim, A.Kim, M.Tushentsov, D.Anderson, M.Lisak and, M.Tushentsov, A.Kim, M.Tushentsov, D.Anderson, M.Lisak and, D.Anderson, A.Kim, M.Tushentsov, D.Anderson, M.Lisak and, M.Lisak. Axial magnetic fields in relativistic self-focusing channels. Phys. Rev. Lett., 89, 095003(2002).

    [20] A. A.Frolov. Excitation of magnetic fields by a circularly polarized laser pulse in a plasma channel. Plasma Phys. Rep., 30, 698-709(2004).

    [21] N.Naseri, N.Naseri, Y.Bychenkov V., W.Rozmus and, V. Y.Bychenkov, N.Naseri, Y.Bychenkov V., W.Rozmus and, W.Rozmus. Axial magnetic field generation by intense circularly polarized laser pulses in underdense plasmas. Phys. Plasmas, 17, 083109(2010).

    [22] S.Ali, S.Ali, R.Davies J., J. and, J. R.Davies, S.Ali, R.Davies J., J. and, J. T.Mendonca. Inverse Faraday effect with linearly polarized laser pulses. Phys. Rev. Lett., 105, 035001(2010).

    [23] M. G.Haines. Generation of an axial magnetic field from photon spin. Phys. Rev. Lett., 87, 135005(2001).

    [24] Z.Najmudin, Z.Najmudin, M.Tatarakis, A.Pukhov, L.Clark E., J.Clarke R., E.Dangor A., J.Faure, V.Malka, D.Neely, I. M., K.Krushelnick and, M.Tatarakis, Z.Najmudin, M.Tatarakis, A.Pukhov, L.Clark E., J.Clarke R., E.Dangor A., J.Faure, V.Malka, D.Neely, I. M., K.Krushelnick and, A.Pukhov, Z.Najmudin, M.Tatarakis, A.Pukhov, L.Clark E., J.Clarke R., E.Dangor A., J.Faure, V.Malka, D.Neely, I. M., K.Krushelnick and, E. L.Clark, Z.Najmudin, M.Tatarakis, A.Pukhov, L.Clark E., J.Clarke R., E.Dangor A., J.Faure, V.Malka, D.Neely, I. M., K.Krushelnick and, R. J.Clarke, Z.Najmudin, M.Tatarakis, A.Pukhov, L.Clark E., J.Clarke R., E.Dangor A., J.Faure, V.Malka, D.Neely, I. M., K.Krushelnick and, A. E.Dangor, Z.Najmudin, M.Tatarakis, A.Pukhov, L.Clark E., J.Clarke R., E.Dangor A., J.Faure, V.Malka, D.Neely, I. M., K.Krushelnick and, J.Faure, Z.Najmudin, M.Tatarakis, A.Pukhov, L.Clark E., J.Clarke R., E.Dangor A., J.Faure, V.Malka, D.Neely, I. M., K.Krushelnick and, V.Malka, Z.Najmudin, M.Tatarakis, A.Pukhov, L.Clark E., J.Clarke R., E.Dangor A., J.Faure, V.Malka, D.Neely, I. M., K.Krushelnick and, D.Neely, Z.Najmudin, M.Tatarakis, A.Pukhov, L.Clark E., J.Clarke R., E.Dangor A., J.Faure, V.Malka, D.Neely, I. M., K.Krushelnick and, M. I. K.Santala, Z.Najmudin, M.Tatarakis, A.Pukhov, L.Clark E., J.Clarke R., E.Dangor A., J.Faure, V.Malka, D.Neely, I. M., K.Krushelnick and, K.Krushelnick. Measurements of the inverse Faraday effect from relativistic laser interactions with an underdense plasma. Phys. Rev. Lett., 87, 215004(2001).

    [25] I. Y.Kostyukov, Y.Kostyukov I., G.Shvets, J.Fisch N., J. and, G.Shvets, Y.Kostyukov I., G.Shvets, J.Fisch N., J. and, N. J.Fisch, Y.Kostyukov I., G.Shvets, J.Fisch N., J. and, J. M.Rax. Magnetic-field generation and electron acceleration in relativistic laser channel. Phys. Plasmas, 9, 636-648(2002).

    [26] G.Shvets, G.Shvets, J.Fisch N., J. and, N. J.Fisch, G.Shvets, J.Fisch N., J. and, J. M.Rax. Magnetic field generation through angular momentum exchange between circularly polarized radiation and charged particles. Phys. Rev. E, 65, 046403(2002).

    [27] D.Wu, and D.Wu, J. W.Wang. Magetostatic amplifier with tunable maximum by twisted-light plasma interactions. Plasma Phys. Controlled Fusion, 59, 095010(2017).

    [28] Y.Shi, Y.Shi, J.Vieira, M. R., R.Bingham, F.Shen B., R. and, , J.Vieira, Y.Shi, J.Vieira, M. R., R.Bingham, F.Shen B., R. and, , R. M. G. M.Trines, Y.Shi, J.Vieira, M. R., R.Bingham, F.Shen B., R. and, , R.Bingham, Y.Shi, J.Vieira, M. R., R.Bingham, F.Shen B., R. and, , B. F.Shen, Y.Shi, J.Vieira, M. R., R.Bingham, F.Shen B., R. and, , R. J.Kingham, Y.Shi, J.Vieira, M. R., R.Bingham, F.Shen B., R. and, . Magnetic field generation in plasma waves driven by copropagating intense twisted lasers. Phys. Rev. Lett., 121, 145002(2018).

    [29] R.Nuter, R.Nuter, P.Korneev, I.Thiele, V.Tikhonchuk and, P.Korneev, R.Nuter, P.Korneev, I.Thiele, V.Tikhonchuk and, I.Thiele, R.Nuter, P.Korneev, I.Thiele, V.Tikhonchuk and, V.Tikhonchuk. Plasma solenoid driven by a laser beam carrying an orbital angular momentum. Phys. Rev. E, 98, 033211(2018).

    [30] A.Longman, and A.Longman, R.Fedosejevs. Kilo-Tesla axial magnetic field generation with high intensity spin and orbital angular momentum beams. Phys. Rev. Res., 3, 043180(2021).

    [31] R. N.Sudan. Mechanism for the generation of 109 G magnetic fields in the interaction of ultraintense short laser pulse with an overdense plasma target. Phys. Rev. Lett., 70, 3075-3078(1993).

    [32] R. A.Beth. Mechanical detection and measurement of the angular momentum of light. Phys. Rev., 50, 115-125(1936).

    [33] L.Allen, L.Allen, W.Beijersbergen M., J. R., J. and, M. W.Beijersbergen, L.Allen, W.Beijersbergen M., J. R., J. and, R. J. C.Spreeuw, L.Allen, W.Beijersbergen M., J. R., J. and, J. P.Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [34] Y.Shi, Y.Shi, B.Shen, L.Zhang, X.Zhang, W.Wang, Z.Xu and, B.Shen, Y.Shi, B.Shen, L.Zhang, X.Zhang, W.Wang, Z.Xu and, L.Zhang, Y.Shi, B.Shen, L.Zhang, X.Zhang, W.Wang, Z.Xu and, X.Zhang, Y.Shi, B.Shen, L.Zhang, X.Zhang, W.Wang, Z.Xu and, W.Wang, Y.Shi, B.Shen, L.Zhang, X.Zhang, W.Wang, Z.Xu and, Z.Xu. Light fan driven by a relativistic laser pulse. Phys. Rev. Lett., 112, 235001(2014).

    [35] J.Vieira, J.Vieira, M. R., P.Alves E., A.Fonseca R., T.Mendonça J., R.Bingham, P.Norreys, L. and, R. M. G. M.Trines, J.Vieira, M. R., P.Alves E., A.Fonseca R., T.Mendonça J., R.Bingham, P.Norreys, L. and, E. P.Alves, J.Vieira, M. R., P.Alves E., A.Fonseca R., T.Mendonça J., R.Bingham, P.Norreys, L. and, R. A.Fonseca, J.Vieira, M. R., P.Alves E., A.Fonseca R., T.Mendonça J., R.Bingham, P.Norreys, L. and, J. T.Mendon?a, J.Vieira, M. R., P.Alves E., A.Fonseca R., T.Mendonça J., R.Bingham, P.Norreys, L. and, R.Bingham, J.Vieira, M. R., P.Alves E., A.Fonseca R., T.Mendonça J., R.Bingham, P.Norreys, L. and, P.Norreys, J.Vieira, M. R., P.Alves E., A.Fonseca R., T.Mendonça J., R.Bingham, P.Norreys, L. and, L. O.Silva. Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering. Nat. Commun., 7, 10371(2016).

    [36] A.Leblanc, A.Leblanc, A.Denoeud, L.Chopineau, G.Mennerat, P.Martin, F.Quéré and, A.Denoeud, A.Leblanc, A.Denoeud, L.Chopineau, G.Mennerat, P.Martin, F.Quéré and, L.Chopineau, A.Leblanc, A.Denoeud, L.Chopineau, G.Mennerat, P.Martin, F.Quéré and, G.Mennerat, A.Leblanc, A.Denoeud, L.Chopineau, G.Mennerat, P.Martin, F.Quéré and, P.Martin, A.Leblanc, A.Denoeud, L.Chopineau, G.Mennerat, P.Martin, F.Quéré and, F.Quéré. Plasma holograms for ultrahigh-intensity optics. Nat. Phys., 13, 440-443(2017).

    [37] K.Qu, K.Qu, Q.Jia, N. and, Q.Jia, K.Qu, Q.Jia, N. and, N. J.Fisch. Plasma q-plate for generation and manipulation of intense optical vortices. Phys. Rev. E, 96, 053207(2017).

    [38] W. P.Wang, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, C.Jiang, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, H.Dong, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, X. M.Lu, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, J. F.Li, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, R. J.Xu, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, Y. J.Sun, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, L. H.Yu, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, Z.Guo, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, X. Y.Liang, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, Y. X.Leng, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, R. X.Li, P.Wang W., C.Jiang, H.Dong, M.Lu X., F.Li J., J.Xu R., J.Sun Y., H.Yu L., Z.Guo, Y.Liang X., X.Leng Y., X.Li R., Z. and, Z. Z.Xu. Hollow plasma acceleration driven by a relativistic reflected hollow laser. Phys. Rev. Lett., 125, 034801(2020).

    [39] R.Nuter, R.Nuter, P.Korneev, E.Dmitriev, I.Thiele, V. and, P.Korneev, R.Nuter, P.Korneev, E.Dmitriev, I.Thiele, V. and, E.Dmitriev, R.Nuter, P.Korneev, E.Dmitriev, I.Thiele, V. and, I.Thiele, R.Nuter, P.Korneev, E.Dmitriev, I.Thiele, V. and, V. T.Tikhonchuk. Gain of electron orbital angular momentum in a direct laser acceleration process. Phys. Rev. E, 101, 053202(2020).

    [40] A. M.Beckley, M.Beckley A., G.Brown T., M. and, T. G.Brown, M.Beckley A., G.Brown T., M. and, M. A.Alonso. Full Poincaré beams. Opt. Express, 18, 10777-10785(2010).

    [41] L.-G.Wang. Optical forces on submicron particles induced by full Poincaré beams. Opt. Express, 20, 20814-20826(2012).

    [42] W.Zhu, W.Zhu, V.Shvedov, W.She, W.Krolikowski and, V.Shvedov, W.Zhu, V.Shvedov, W.She, W.Krolikowski and, W.She, W.Zhu, V.Shvedov, W.She, W.Krolikowski and, W.Krolikowski. Transverse spin angular momentum of tightly focused full Poincaré beams. Opt. Express, 23, 34029-34041(2015).

    [43] W.Lin, W.Lin, Y.Ota, Y.Arakawa, S.Iwamoto and, Y.Ota, W.Lin, Y.Ota, Y.Arakawa, S.Iwamoto and, Y.Arakawa, W.Lin, Y.Ota, Y.Arakawa, S.Iwamoto and, S.Iwamoto. Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers. Phys. Rev. Res., 3, 023055(2021).

    [44] C.Thaury, C.Thaury, F.Quéré, J.-P.Geindre, A.Levy, T.Ceccotti, P.Monot, M.Bougeard, F.Réau, P.d’Oliveira, P.Audebert, R.Marjoribanks, P.Martin and, F.Quéré, C.Thaury, F.Quéré, J.-P.Geindre, A.Levy, T.Ceccotti, P.Monot, M.Bougeard, F.Réau, P.d’Oliveira, P.Audebert, R.Marjoribanks, P.Martin and, J.-P.Geindre, C.Thaury, F.Quéré, J.-P.Geindre, A.Levy, T.Ceccotti, P.Monot, M.Bougeard, F.Réau, P.d’Oliveira, P.Audebert, R.Marjoribanks, P.Martin and, A.Levy, C.Thaury, F.Quéré, J.-P.Geindre, A.Levy, T.Ceccotti, P.Monot, M.Bougeard, F.Réau, P.d’Oliveira, P.Audebert, R.Marjoribanks, P.Martin and, T.Ceccotti, C.Thaury, F.Quéré, J.-P.Geindre, A.Levy, T.Ceccotti, P.Monot, M.Bougeard, F.Réau, P.d’Oliveira, P.Audebert, R.Marjoribanks, P.Martin and, P.Monot, C.Thaury, F.Quéré, J.-P.Geindre, A.Levy, T.Ceccotti, P.Monot, M.Bougeard, F.Réau, P.d’Oliveira, P.Audebert, R.Marjoribanks, P.Martin and, M.Bougeard, C.Thaury, F.Quéré, J.-P.Geindre, A.Levy, T.Ceccotti, P.Monot, M.Bougeard, F.Réau, P.d’Oliveira, P.Audebert, R.Marjoribanks, P.Martin and, F.Réau, C.Thaury, F.Quéré, J.-P.Geindre, A.Levy, T.Ceccotti, P.Monot, M.Bougeard, F.Réau, P.d’Oliveira, P.Audebert, R.Marjoribanks, P.Martin and, P.d’Oliveira, C.Thaury, F.Quéré, J.-P.Geindre, A.Levy, T.Ceccotti, P.Monot, M.Bougeard, F.Réau, P.d’Oliveira, P.Audebert, R.Marjoribanks, P.Martin and, P.Audebert, C.Thaury, F.Quéré, J.-P.Geindre, A.Levy, T.Ceccotti, P.Monot, M.Bougeard, F.Réau, P.d’Oliveira, P.Audebert, R.Marjoribanks, P.Martin and, R.Marjoribanks, C.Thaury, F.Quéré, J.-P.Geindre, A.Levy, T.Ceccotti, P.Monot, M.Bougeard, F.Réau, P.d’Oliveira, P.Audebert, R.Marjoribanks, P.Martin and, P.Martin. Plasma mirrors for ultrahigh-intensity optics. Nat. Phys., 3, 424-429(2007).

    [45] S.Monchocé, S.Monchocé, S.Kahaly, A.Leblanc, L.Videau, P.Combis, F.Réau, D.Garzella, P.D’Oliveira, P.Martin, F.Quéré and, S.Kahaly, S.Monchocé, S.Kahaly, A.Leblanc, L.Videau, P.Combis, F.Réau, D.Garzella, P.D’Oliveira, P.Martin, F.Quéré and, A.Leblanc, S.Monchocé, S.Kahaly, A.Leblanc, L.Videau, P.Combis, F.Réau, D.Garzella, P.D’Oliveira, P.Martin, F.Quéré and, L.Videau, S.Monchocé, S.Kahaly, A.Leblanc, L.Videau, P.Combis, F.Réau, D.Garzella, P.D’Oliveira, P.Martin, F.Quéré and, P.Combis, S.Monchocé, S.Kahaly, A.Leblanc, L.Videau, P.Combis, F.Réau, D.Garzella, P.D’Oliveira, P.Martin, F.Quéré and, F.Réau, S.Monchocé, S.Kahaly, A.Leblanc, L.Videau, P.Combis, F.Réau, D.Garzella, P.D’Oliveira, P.Martin, F.Quéré and, D.Garzella, S.Monchocé, S.Kahaly, A.Leblanc, L.Videau, P.Combis, F.Réau, D.Garzella, P.D’Oliveira, P.Martin, F.Quéré and, P.D’Oliveira, S.Monchocé, S.Kahaly, A.Leblanc, L.Videau, P.Combis, F.Réau, D.Garzella, P.D’Oliveira, P.Martin, F.Quéré and, P.Martin, S.Monchocé, S.Kahaly, A.Leblanc, L.Videau, P.Combis, F.Réau, D.Garzella, P.D’Oliveira, P.Martin, F.Quéré and, F.Quéré. Optically controlled solid-density transient plasma gratings. Phys. Rev. Lett., 112, 145008(2014).

    [46] S.Weng, S.Weng, Q.Zhao, Z.Sheng, W.Yu, S.Luan, M.Chen, L.Yu, M.Murakami, B.Mori W., J.Zhang and, Q.Zhao, S.Weng, Q.Zhao, Z.Sheng, W.Yu, S.Luan, M.Chen, L.Yu, M.Murakami, B.Mori W., J.Zhang and, Z.Sheng, S.Weng, Q.Zhao, Z.Sheng, W.Yu, S.Luan, M.Chen, L.Yu, M.Murakami, B.Mori W., J.Zhang and, W.Yu, S.Weng, Q.Zhao, Z.Sheng, W.Yu, S.Luan, M.Chen, L.Yu, M.Murakami, B.Mori W., J.Zhang and, S.Luan, S.Weng, Q.Zhao, Z.Sheng, W.Yu, S.Luan, M.Chen, L.Yu, M.Murakami, B.Mori W., J.Zhang and, M.Chen, S.Weng, Q.Zhao, Z.Sheng, W.Yu, S.Luan, M.Chen, L.Yu, M.Murakami, B.Mori W., J.Zhang and, L.Yu, S.Weng, Q.Zhao, Z.Sheng, W.Yu, S.Luan, M.Chen, L.Yu, M.Murakami, B.Mori W., J.Zhang and, M.Murakami, S.Weng, Q.Zhao, Z.Sheng, W.Yu, S.Luan, M.Chen, L.Yu, M.Murakami, B.Mori W., J.Zhang and, W. B.Mori, S.Weng, Q.Zhao, Z.Sheng, W.Yu, S.Luan, M.Chen, L.Yu, M.Murakami, B.Mori W., J.Zhang and, J.Zhang. Extreme case of Faraday effect: Magnetic splitting of ultrashort laser pulses in plasmas. Optica, 4, 1086-1091(2017).

    [47] T. D.Arber, D.Arber T., K.Bennett, S.Brady C., A.Lawrence-Douglas, G.Ramsay M., J.Sircombe N., P.Gillies, G.Evans R., H.Schmitz, R.Bell A., C. and, K.Bennett, D.Arber T., K.Bennett, S.Brady C., A.Lawrence-Douglas, G.Ramsay M., J.Sircombe N., P.Gillies, G.Evans R., H.Schmitz, R.Bell A., C. and, C. S.Brady, D.Arber T., K.Bennett, S.Brady C., A.Lawrence-Douglas, G.Ramsay M., J.Sircombe N., P.Gillies, G.Evans R., H.Schmitz, R.Bell A., C. and, A.Lawrence-Douglas, D.Arber T., K.Bennett, S.Brady C., A.Lawrence-Douglas, G.Ramsay M., J.Sircombe N., P.Gillies, G.Evans R., H.Schmitz, R.Bell A., C. and, M. G.Ramsay, D.Arber T., K.Bennett, S.Brady C., A.Lawrence-Douglas, G.Ramsay M., J.Sircombe N., P.Gillies, G.Evans R., H.Schmitz, R.Bell A., C. and, N. J.Sircombe, D.Arber T., K.Bennett, S.Brady C., A.Lawrence-Douglas, G.Ramsay M., J.Sircombe N., P.Gillies, G.Evans R., H.Schmitz, R.Bell A., C. and, P.Gillies, D.Arber T., K.Bennett, S.Brady C., A.Lawrence-Douglas, G.Ramsay M., J.Sircombe N., P.Gillies, G.Evans R., H.Schmitz, R.Bell A., C. and, R. G.Evans, D.Arber T., K.Bennett, S.Brady C., A.Lawrence-Douglas, G.Ramsay M., J.Sircombe N., P.Gillies, G.Evans R., H.Schmitz, R.Bell A., C. and, H.Schmitz, D.Arber T., K.Bennett, S.Brady C., A.Lawrence-Douglas, G.Ramsay M., J.Sircombe N., P.Gillies, G.Evans R., H.Schmitz, R.Bell A., C. and, A. R.Bell, D.Arber T., K.Bennett, S.Brady C., A.Lawrence-Douglas, G.Ramsay M., J.Sircombe N., P.Gillies, G.Evans R., H.Schmitz, R.Bell A., C. and, C. P.Ridgers. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Controlled Fusion, 57, 113001(2015).

    [48] S.-p.Zhu, S.-p.Zhu, Y.Zheng C., X. and, C. Y.Zheng, S.-p.Zhu, Y.Zheng C., X. and, X. T.He. A theoretical model for a spontaneous magnetic field in intense laser plasma interaction. Phys. Plasmas, 10, 4166-4168(2003).

    [49] B.Qiao, B.Qiao, S.-p.Zhu, Y.Zheng C., X. and, S.-p.Zhu, B.Qiao, S.-p.Zhu, Y.Zheng C., X. and, C. Y.Zheng, B.Qiao, S.-p.Zhu, Y.Zheng C., X. and, X. T.He. Quasistatic magnetic and electric fields generated in intense laser plasma interaction. Phys. Plasmas, 12, 053104(2005).

    [50] B.Qiao, B.Qiao, T.He X., S.-p.Zhu and, X. T.He, B.Qiao, T.He X., S.-p.Zhu and, S.-p.Zhu. Fluid theory for quasistatic magnetic field generation in intense laser plasma interaction. Phys. Plasmas, 13, 053106(2006).

    Wei Liu, Qing Jia, Jian Zheng. Inverse Faraday effect of weakly relativistic full Poincaré beams in plasma[J]. Matter and Radiation at Extremes, 2023, 8(1): 014405
    Download Citation