[1] Wang, T., Zhang, J., Zhang, N., Wang, S., Wu, B., Lin, N., Kusalik, P., Jia, Z., Tao, X.: Single crystal fibers: diversified functional crystal material. Adv. Fiber Mater. 1(3–4), 163–187 (2019)
[2] Luo, Q., Tang, G., Sun, M., Qian, G., Shi, Z., Qian, Q., Yang, Z.: Single crystal tellurium semiconductor core optical fibers. Opt. Mater. Express 10(4), 1072 (2020)
[3] Soleimani, N., Ponting, B., Gebremichael, E., Ribuot, A., Maxwell, G.: Coilable single crystals fibers of doped-YAG for high power laser applications. J. Cryst. Growth 393, 18–22 (2014)
[4] Kim W, Shaw B, Bayya S, Askins C, Peele J, Rhonehouse D, Meyers J, Thapa R, Gibson D, Sanghera J. Cladded single crystal fibers for high power fiber lasers. In: Proceedings of Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications X. San Diego: SPIE, 2016, 99580O
[5] Yang, T.T., Yang, T.I., Soundararajan, R., Yeh, P.S., Kuo, C.Y., Huang, S.L., Donati, S.: Widely tunable, 25-mW power, Ti:sapphire crystalfiber laser. IEEE Photonics Technol. Lett. 31(24), 1921–1924 (2019)
[6] Yin, S.S., Kim, J., Zhan, C., An, J., Lee, J., Ruffin, P., Edwards, E., Brantley, C., Luo, C.: Supercontinuum generation in single crystal sapphire fibers. Opt. Commun. 281(5), 1113–1117 (2008)
[7] Bezgabadi, A.S., Bolorizadeh, M.A.: Dispersion properties of a singlemode windmill single crystal sapphire optical fiber and its broadband infrared supercontinuum generation. Opt. Eng. 57(11), 1 (2018)
[8] Pfeiffenberger, N.: Sapphire photonic crystal fibers. Opt. Eng. 49(9), 090501 (2010)
[9] Hill, C., Homa, D., Liu, B., Yu, Z., Wang, A., Pickrell, G.: Submicron diameter single crystal sapphire optical fiber. Mater. Lett. 138, 71–73 (2015)
[10] Chen, H., Tian, F., Chi, J., Kanka, J., Du, H.: Advantage of multimode sapphire optical fiber for evanescent-field SERS sensing. Opt. Lett. 39(20), 5822–5825 (2014)
[11] Chen, H., Buric, M., Ohodnicki, P.R., Nakano, J., Liu, B., Chorpening, B.T.: Review and perspective: sapphire optical fiber cladding development for harsh environment sensing. Appl. Phys. Rev. 5(1), 011102 (2018)
[12] Myers J D, Kim W, Shaw L B, Bayya S, Qadri S N, Rhonehouse D, Askins C, Peele J, Thapa R, Bekele R Y, McClain C, Sanghera J S. Development of thin film claddings for single crystal optical fiber. In: Proceedings of Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF). Zurich: OSA, NoTu4D.4 (2018)
[13] Lai, C.C., Gao, W.T., Nguyen, D.H., Ma, Y.R., Cheng, N.C., Wang, S.C., Tjiu, J.W., Huang, C.M.: Toward single-mode active crystal fibers for next-generation high-power fiber devices. ACS Appl. Mater. Interfaces. 6(16), 13928–13936 (2014)
[14] Bera S, Liu B, Wuenschell J K, Baltrus J, Lau D, Howard B, Buric M P, Chorpening B T, Ohodnicki P R. Fabrication and evaluation of sapphire fiber cladding via magnesium aluminate spinel solgel based approaches. In: Proceedings of Fiber Optic Sensors and Applications XVI. Baltimore: SPIE, 19 (2019)
[15] Malinowski, M., Sarnecki, J., Piramidowicz, R., Szczepanski, P., Wolinski, W.: Epitaxial RE3+: YAG planar waveguide lasers. Opto-Electron. Rev. 9(1), 67–74 (2001)
[16] Lo, C.Y., Huang, K.Y., Chen, J.C., Tu, S.Y., Huang, S.L.: Glassclad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission. Opt. Lett. 29(5), 439–441 (2004)
[17] Lo, C.Y., Huang, K.Y., Chen, J.C., Chuang, C.Y., Lai, C.C., Huang, S.L., Lin, Y.S., Yeh, P.S.: Double-clad Cr4+:YAG crystal fiber amplifier. Opt. Lett. 30(2), 129–131 (2005)
[18] Huang, K.Y., Hsu, K.Y., Jheng, D.Y., Zhuo, W.J., Chen, P.Y., Yeh, P.S., Huang, S.L.: Low-loss propagation in Cr4+: YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique. Opt. Express 16(16), 12264–12271 (2008)
[19] Tong, L., Gattass, R.R., Ashcom, J.B., He, S., Lou, J., Shen, M., Maxwell, I., Mazur, E.: Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426(6968), 816–819 (2003)
[20] Lan, C.W., Tu, C.Y.: Three-dimensional simulation of facet formation and the coupled heat flow and segregation in bridgman growth of oxide crystals. J. Cryst. Growth 233(3), 523–536 (2001)
[21] Bera S, Nie C D, Harrington J A, Chick T, Chakrabarty A, Trembath-Reichert S, Chapman J, Rand S C. Cladding single crystal yag fibers grown by laser heated pedestal growth. In: Proceedings of Solid State Lasers XXV: Technology and Devices. San Francisco: SPIE, 97260C (2016)
[22] Bufetova, G.A., Rusanov, S.Y., Seregin, V.F., Pyrkov, Y.N., Kamynin, V.A., Tsvetkov, V.B.: Temperature distribution across the growth zone of sapphire (Al2O3) and yttrium–aluminum garnet (YAG) single crystal fibers. J. Cryst. Growth 433, 54–58 (2016)
[23] Bufetova, G.A., Rusanov, S.Y., Seregin, V.F., Pyrkov, Y.N., Tsvetkov, V.B.: Temperature and emissivity measurements at the sapphire single crystal fiber growth process. J. Cryst. Growth 480, 85–89 (2017)
[24] Wang, W.L., Tseng, Y.H., Cheng, W.H., Wang, J.S.: Silica cladded Nd3+:YAG single crystal core optical fiber and its submicron residual stress detection. Opt. Mater. Express 4(4), 656 (2014)
[25] Spratt, W., Huang, M., Murray, T., Xia, H.: Optical mode confinement and selection in single-crystal sapphire fibers by formation of nanometer scale cavities with hydrogen ion implantation. J. Appl. Phys. 114(20), 203501 (2013)
[26] Spratt, W.T., Huang, M., Jia, C., Wang, L., Kamineni, V.K., Diebold, A.C., Matyi, R., Xia, H.: Effects of hydrogen ion implantation and thermal annealing on structural and optical properties of single-crystal sapphire. Mater. Res. Soc. Online Proc. Lib. 1354, 609 (2011)
[27] Spratt, W.T., Huang, M., Jia, C., Wang, L., Kamineni, V.K., Diebold, A.C., Xia, H.: Formation of optical barriers with excellent thermal stability in single-crystal sapphire by hydrogen ion implantation and thermal annealing. Appl. Phys. Lett. 99(11), 111909 (2011)
[28] Wilson, B.A., Rana, S., Subbaraman, H., Kandadai, N., Blue, T.E.: Modeling of the creation of an internal cladding in sapphire optical fiber using the 6Li(n, α)3H reaction. J. Lightwave Technol. 36(23), 5381–5387 (2018)
[29] Cheng, Y., Hill, C., Liu, B., Yu, Z., Xuan, H., Homa, D., Wang, A., Pickrell, G.: Design and analysis of large-core single-mode windmill single crystal sapphire optical fiber. Opt. Eng. 55(6), 066101 (2016)
[30] Hill, C., Homa, D., Yu, Z., Cheng, Y., Liu, B., Wang, A., Pickrell, G.: Single mode air-clad single crystal sapphire optical fiber. Appl. Sci. 7(5), 473 (2017)
[31] Wei, C., Joseph Weiblen, R., Menyuk, C.R., Hu, J.: Negative curvature fibers. Adv. Opt. Photon. 9(3), 504 (2017)
[32] Lian, X., Farrell, G., Wu, Q., Han, W., Shen, C., Ma, Y., Semenova, Y.: Anti-resonance, inhibited coupling and mode transition in depressed core fibers. Opt. Express 28(11), 16526–16541 (2020)
[33] Hossain, M. M., Maniruzzaman, M.: Analysis of dispersion and confinement loss in photonic crystal fiber. In: Proceedings of 2014 International Conference on Electrical Engineering and Information & Communication Technology. IEEE (2014)
[34] Xu, S., Yao, Z., Pei, G., Luo, X., Wu, X., Lin, Y.: Preparation and properties of sapphire by edge-defined film-fed growth (EFG) method with different growth directions. J. Wuhan Univ. Technol. 33(5), 1022–1027 (2018)
[35] Maclean J O, Hodson J R, Voisey K T. Laser drilling of via microholes in single-crystal semiconductor substrates using a 1070 nm fibre laser with millisecond pulse widths. In: Proceedings of Industrial Laser Applications Symposium (ILAS 2015). Kenilworth: SPIE, 965704 (2015)