[8] FENG D C, LIU Z T, WANG X D, et al. Machine learning-based compressive strength prediction for concrete: an adaptive boosting approach[J]. Construction and Building Materials, 2020, 230: 117000.
[9] ASTERIS P G, SKENTOU A D, BARDHAN A, et al. Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models[J]. Cement and Concrete Research, 2021, 145: 106449.
[14] CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 13-17, 2016, San Francisco, California, USA. ACM, 2016: 785-794.
[15] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45: 5-32.
[16] WIDIASARI I R, NUGROHO L E, WIDYAWAN. Deep learning multilayer perceptron (MLP) for flood prediction model using wireless sensor network based hydrology time series data mining[C]//2017 International Conference on Innovative and Creative Information Technology (ICITech). Salatiga, Indonesia. IEEE, 2017: 1-5.
[17] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[19] YEH I C. Modeling of strength of high-performance concrete using artificial neural networks[J]. Cement and Concrete Research, 1998, 28(12): 1797-1808.