• Journal of Advanced Dielectrics
  • Vol. 12, Issue 4, 2250008 (2022)
A. O. Nikitin*, V. A. Kiselev*, V. A. Misilin*, Yu. V. Kiliba*, and R. V. Petrov*
Author Affiliations
  • Institute of Electronic and Informative Systems, Novgorod State University, No. 41, B. St. Petersburgskaya Str., Veliky Novgorod 173003, Russia
  • show less
    DOI: 10.1142/S2010135X22500084 Cite this Article
    A. O. Nikitin, V. A. Kiselev, V. A. Misilin, Yu. V. Kiliba, R. V. Petrov. Magnetoelectric gradient structures: Properties and applications[J]. Journal of Advanced Dielectrics, 2022, 12(4): 2250008 Copy Citation Text show less
    References

    [1] J. Wang. Multiferroic Materials. Properties, Techniques, and Applications(2017).

    [2] M. I. Bichurin, R. V. Petrov, Yu. V. Kiliba. Magnetoelectric microwave phase shifters. Ferroelectrics, 200, 311(1997).

    [3] A. O. Nikitin, R. V. Petrov. Magnetoelectric gradient structures. J. Phys. Conf. Ser., 2052, 012029(2021).

    [4] A. O. Nikitin, R. V. Petrov, M. A. Havanova. Control of magnetoelectric antenna by electric field. CriMiCo’2019, ITM Web Conf., 30, 05028(2019).

    [5] C.-W. Nan, M. I. Bichurin, S. Dong, D. Viehland, G. Srinivasan. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys., 103, 031101(2011).

    [6] M. I. Bichurin, V. M. Petrov, R. V. Petrov, A. S. Tatarenko. Magnetoelectric Composites(2019).

    [7] V. E. Demidov, B. A. Kalinikos. The spectrum of dipole-exchange spin waves in tangentially-magnetized metal-ferroelectric-ferromagnet-ferroelectric-metal sandwich structures. Tech. Phys. Lett., 26, 273(2000).

    [8] V. E. Demidov, B. A. Kalinikos. Spectra of exchange dipole electromagnetic-spin waves in asymmetric metal-insulator–ferromagnetic–insulator–metal systems. Tech. Phys., 46, 219(2001).

    [9] A. A. Nikitin, A. B. Ustinov, A. A. Semenov, B. A. Kalinikos. A microwave phase shifter based on a planar ferrite-ferroelectric thin-film structure. Tech. Phys. Lett., 40, 277(2014).

    [10] A. B. Ustinov, V. S. Tiberkevich, G. Srinivasan, A. N. Slavin, A. A. Semenov, S. F. Karmanenko, B. A. Kalinikos, J. V. Mantese, R. Ramer. Electric field tunable ferrite-ferroelectric hybrid wave microwave resonators: Experiment and theory. J. Appl. Phys., 100, 093905(2006).

    [11] R. V. Petrov, A. S. Tatarenko, G. Srinivasan, J. V. Mantese. Antenna miniaturization with ferrite-ferroelectric composites. Mic. Opt. Tech. Lett., 50, 3155(2008).

    [12] R. V. Petrov, A. O. Nikitin, M. I. Bichurin, G. Srinivasan. Magnetoelectric antenna array. IRECAP, 10, 371(2020).

    [13] M. I. Bichurin, R. V. Petrov, Yu. D. Vorobyev, Yu. V. Kiliba. Bandpass tunable magnetoelectric microwave filter. Proc. Int. Forum on Problems of Science, Technology and Education, MIIGAIK, 234-238(1997).

    [14] A. S. Tatarenko, G. Srinivasan, D. A. Filippov. Magnetoelectric microwave attenuator. Electron. Lett., 43, 674(2007).

    [15] M. I. Bichurin, R. V. Petrov, Yu. V. Kiliba. Magnetoelectric microwave phase shifters. Ferroelectrics, 202, 311(1997).

    [16] M. I. Bichurin, R. V. Petrov, I. N. Solovyov, A. N. Solovyov, D. V. Kovalenko. Study of a magnetoelectric microwave gyrator. Mod. Probl. Sci. Educ., 2, 201(2012).

    [17] V. R. Tuz, V. B. Kazansky, V. Khardikov. Electrodynamic Theory of Composite Media(2015).

    [18] Y. Zhang, Y. Aratani, H. Nakazima. A microwave free-space method using artificial lens with anti-reflection layer. Sens. Imaging, 18, 1(2017).

    [19] I. Awai, Artificial dielectric resonators for miniaturized filters, IEEE Microwave Mag.9, 55 (2008).

    [20] Y. Zhang, T. Imahori, Y. Fujita. Artificial material for patch antenna gain enhancement and its application in microwave free-space method. Int. Conf. Electromagnetic in Advanced Applications, 19081908(2019).

    [21] S. Biber, J. Richter, S. Martius, L. Schmidt. Design of artificial dielectrics for anti-reflection-coatings. 33 Eur. Microwave Conf. Proc., 1115-1118(2003).

    [22] Ch. Ang, Zh. Yu. DC electric-field dependence of the dielectric constant in polar dielectrics: Multipolarization mechanism model. Phys. Rev. B, 69, 174109(2004).

    [23] M. V. Vopson. Fundamental of multiferroic materials and their possible application. J. Critical Rev. Solid State Mater. Sci., 40, 223(2015).

    [24] A. V. Vashkovskij, E. H. Lock. Radiation patterns resulting owing to transformation of surface magnetostatic waves to electromagnetic waves. J. Commun. Technol. Electron., 40, 1030(1995).

    [25] A. V. Vashkovskij, E. H. Lock. On the parameters of patterns of radiation arising in the process of transformation of a magnetostatic surface wave into an electromagnetic wave. J. Commun. Technol. Electron., 49, 904(2004).

    [26] A. V. Vashkovskij, E. H. Lock. The mechanism of transformation of a magnetostatic surface wave into an electromagnetic wave. J. Commun. Technol. Electron., 54, 456(2009).

    [27] V. Stancu, L. Amarande, M. Botea, A. Luga, L. N. Leonat, A. G. Tomulescu, M. Cioangher, L. M. Balescu, L. Pinitilie. Comparation between dielectric and pyroelectric properties of PZFNT and BST type ceramics. Process. Appl. Ceram., 13, 269(2019).

    A. O. Nikitin, V. A. Kiselev, V. A. Misilin, Yu. V. Kiliba, R. V. Petrov. Magnetoelectric gradient structures: Properties and applications[J]. Journal of Advanced Dielectrics, 2022, 12(4): 2250008
    Download Citation