• Chinese Journal of Lasers
  • Vol. 50, Issue 11, 1101021 (2023)
Aihua Wang1、2, Jinhui Li3, Quan Sheng1、2、*, Jingni Geng1、2, Shijie Fu1、2, Wei Shi1、2、**, and Jianquan Yao1、2
Author Affiliations
  • 1School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Opto-electronic Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
  • 3Chengxian College, Southeast University, Nanjing 210088, Jiangsu, China
  • show less
    DOI: 10.3788/CJL230543 Cite this Article Set citation alerts
    Aihua Wang, Jinhui Li, Quan Sheng, Jingni Geng, Shijie Fu, Wei Shi, Jianquan Yao. Ultra-High-Order Laguerre-Gaussian Vortex Laser via Mode-Selection Enabled by Intracavity Spherical Aberration[J]. Chinese Journal of Lasers, 2023, 50(11): 1101021 Copy Citation Text show less
    References

    [1] Willner A E, Huang H, Yan Y et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 7, 66-106(2015).

    [2] Bradshaw D S, Andrews D L. Interactions between spherical nanoparticles optically trapped in Laguerre-Gaussian modes[J]. Optics Letters, 30, 3039-3041(2005).

    [3] Hnatovsky C, Shvedov V G, Krolikowski W et al. Materials processing with a tightly focused femtosecond laser vortex pulse[J]. Optics Letters, 35, 3417-3419(2010).

    [4] Wei Y, Yu Y H, Hei X B et al. Application of vortex beam and photon counting in underwater optical communication[J]. Laser & Optoelectronics Progress, 59, 1301001(2022).

    [5] Wang Z X, Zhang N, Yuan X C. High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication[J]. Optics Express, 19, 482-492(2011).

    [6] Liu J, Wang J. Research progress of vortex laser[J]. Chinese Journal of Lasers, 49, 1201001(2022).

    [7] Fickler R, Lapkiewicz R, Plick W N et al. Quantum entanglement of high angular momenta[J]. Science, 338, 640-643(2012).

    [8] Emile O, Emile J. Naked eye picometer resolution in a Michelson interferometer using conjugated twisted beams[J]. Optics Letters, 42, 354-357(2017).

    [9] Beijersbergen M W, Coerwinkel R P C, Kristensen M et al. Helical-wavefront laser beams produced with a spiral phaseplate[J]. Optics Communications, 112, 321-327(1994).

    [10] Beijersbergen M W, Allen L, van der Veen H E L O et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 96, 123-132(1993).

    [11] Courtial J, Padgett M J. Performance of a cylindrical lens mode converter for producing Laguerre-Gaussian laser modes[J]. Optics Communications, 159, 13-18(1999).

    [12] Liu Q, Pan J, Wan Z S et al. Generation methods for complex vortex structured light field[J]. Chinese Journal of Lasers, 47, 0500006(2020).

    [13] Omatsu T, Miyamoto K, Lee A. Wavelength-versatile optical vortex lasers[J]. Journal of Optics, 19, 123002(2017).

    [14] Chen Y F, Lan Y P, Wang S C. Generation of Laguerre-Gaussian modes in fiber-coupled laser diode end-pumped lasers[J]. Applied Physics B, 72, 167-170(2001).

    [15] LianT H, ZhuJ H, LiuJ N et al. 端面离焦泵浦薄片涡旋光激光器[J/OL]. 激光与光电子学进展, 1-11. https://kns.cnki.net/kcms/detail/31.1690.TN.20220724.1141.010.html

    [16] Oron R, Danziger Y, Davidson N et al. Laser mode discrimination with intra-cavity spiral phase elements[J]. Optics Communications, 169, 115-121(1999).

    [17] Ito A, Kozawa Y, Sato S. Generation of hollow scalar and vector beams using a spot-defect mirror[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 27, 2072-2077(2010).

    [18] Li P, Zhang S L, Wang S et al. High efficiency vortex beam generation by optimization of defect-spot mirror[J]. Chinese Journal of Lasers, 47, 0501005(2020).

    [19] Qiao Z, Xie G Q, Wu Y H et al. Generating high-charge optical vortices directly from laser up to 288th order[J]. Laser & Photonics Reviews, 12, 1800019(2018).

    [20] Thirugnanasambandam M P, Senatsky Y, Ueda K. Generation of very-high order Laguerre-Gaussian modes in Yb∶YAG ceramic laser[J]. Laser Physics Letters, 7, 637-643(2010).

    [21] Wang M, Ma Y Y, Sheng Q et al. Laguerre-Gaussian beam generation via enhanced intracavity spherical aberration[J]. Optics Express, 29, 27783-27790(2021).

    [22] Sheng Q, Wang A H, Ma Y Y et al. Intracavity spherical aberration for selective generation of single-transverse-mode Laguerre-Gaussian output with order up to 95[J]. PhotoniX, 3, 1-12(2022).

    [23] Wang X Q, Lü B D. Focusing properties of Laguerre-Gaussian beams[J]. Laser Technology, 20, 185-190(1996).

    [24] Sheng Q, Geng J N, Wang A H et al. Cat-eye retroreflectors based large-dynamic-range alignment-free laser[J]. Acta Physica Sinica, 72, 044203(2023).

    [25] Sheng Q, Wang A H, Qi Y et al. Enhancing the field of view of cat-eye retroreflectors by simply matching the mirror radius of curvature and the lens focal length[J]. Results in Physics, 37, 105558(2022).

    [26] Siegman A E[M]. Lasers, 16, 647(1986).

    [27] Liu J J, Sheng Q, Wang M et al. High-order Laguerre-Gaussian mode laser generated based on spherical aberration cavity[J]. Acta Physica Sinica, 71, 014204(2022).

    Aihua Wang, Jinhui Li, Quan Sheng, Jingni Geng, Shijie Fu, Wei Shi, Jianquan Yao. Ultra-High-Order Laguerre-Gaussian Vortex Laser via Mode-Selection Enabled by Intracavity Spherical Aberration[J]. Chinese Journal of Lasers, 2023, 50(11): 1101021
    Download Citation