• Acta Photonica Sinica
  • Vol. 54, Issue 2, 0254102 (2025)
Zhenglin YANG1,2, Qing LI1,2, Shaolong DENG1,2, Chen WANG3,*..., Zhaoguo ZHANG1,2, Lei LIU1,2 and Caiwen MA3|Show fewer author(s)
Author Affiliations
  • 1School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China
  • 2Shaanxi Aerospace Flight Vehicle Design Key Laboratory, Xi'an 710072, China
  • 3Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
  • show less
    DOI: 10.3788/gzxb20255402.0254102 Cite this Article
    Zhenglin YANG, Qing LI, Shaolong DENG, Chen WANG, Zhaoguo ZHANG, Lei LIU, Caiwen MA. Modeling of Microvibration Mechanism of Drag-free Control System for Space Gravitational Wave Detection Satellites (Invited)[J]. Acta Photonica Sinica, 2025, 54(2): 0254102 Copy Citation Text show less
    Simulation results of solar radiation pressure perturbation force
    Fig. 1. Simulation results of solar radiation pressure perturbation force
    Simulation results of residual gas damping force
    Fig. 2. Simulation results of residual gas damping force
    Simulation results of magnetic field coupling disturbance
    Fig. 3. Simulation results of magnetic field coupling disturbance
    Simulation results of fluctuation coupling disturbance in capacitive sensors
    Fig. 4. Simulation results of fluctuation coupling disturbance in capacitive sensors
    Annual variation curve of solar heat flux for a satellite
    Fig. 5. Annual variation curve of solar heat flux for a satellite
    Solenoid valve spool model schematic
    Fig. 6. Solenoid valve spool model schematic
    Simulation results of microthruster thrust
    Fig. 7. Simulation results of microthruster thrust
    Schematic diagram of the structure of the Tianqin-3 concept satellite
    Fig. 8. Schematic diagram of the structure of the Tianqin-3 concept satellite
    FEM model of the Tianqin-3 concept satellite
    Fig. 9. FEM model of the Tianqin-3 concept satellite
    The first 4 orders of flexible modal shape
    Fig. 10. The first 4 orders of flexible modal shape
    Micro-vibration disturbance transmission model for satellite platform based on state space equations
    Fig. 11. Micro-vibration disturbance transmission model for satellite platform based on state space equations
    Block diagram of the integrated simulation of the drag-free system
    Fig. 12. Block diagram of the integrated simulation of the drag-free system
    Multi-interference source integration simulation results
    Fig. 13. Multi-interference source integration simulation results
    Simulation results of angular response of precision pointing mechanism under each working condition
    Fig. 14. Simulation results of angular response of precision pointing mechanism under each working condition
    PSD plot of angular response of precision pointing mechanism under each working condition
    Fig. 15. PSD plot of angular response of precision pointing mechanism under each working condition
    Semimajor axis/kmEccentricityInclination/(°)Right ascension of the ascending node/(°)Argument of periapsis/(°)Initial trueanomaly/(°)
    100 938.056 4120.000 41194.785 623209.438 2260.061 831325.619 846
    Table 1. Satellite orbital parameters
    ParametersValue
    Average intracavity pressure, pave9.77×10-6 Pa
    Cross-sectional area in the direction of the test mass motion, SPM0.002 5 mm2
    Molecular mass of gas inside the cavity, m04.579×10-6 kg/mol
    Average temperature inside the cavity, Tave300 K
    Direction of motionX+
    Table 2. Simulation parameters of residual gas damping force
    ParametersValue
    χm10-6
    ρ19 600 kg/m3
    μ01.26×10-6 N/A3
    BSC3×10-6 T/m
    mp2.45 kg
    Mr2×10-8 Am2
    rm0.298 05 m±3.464 μm
    Table 3. Magnetic field coupling perturbation simulation parameters
    ParametersValue
    Cx7.417×10-12
    Cg≈7.417×10-12
    C≈6Cx
    d0.003 mm
    Δd10 μm
    Vd0.01 V
    ΔVx10-4 V
    Table 4. Magnetic field coupling perturbation simulation parameters192021
    ParametersValue
    Densities, ρ1.75 g/cm3
    Elastic modulus, E337 GPa
    Poisson's ratio, μ0.307
    Absorptance, αAb0.9
    Emissivity, εEMIT0.85
    Coefficient of thermal conductivity, κ10 W/(m·K)
    Specific heat capacity, Cp1.0 J/(kg·K)
    Coefficient of thermal expansion, Ψ1×10-5 K
    Stefan-Boltzmann constant, σ5.67×10-8 W/(m2·K4
    Ambient temperature, T00 K
    Table 5. Thermodynamic simulation parameters
    ParametersValue
    Valve core mass, mV2 g
    Electromagnetic proportional amplification factor, Kf12
    Coulomb friction force, Ff7 N
    Spring stiffness, Kth6 N/m
    Flow coefficient, Cd0.68
    Thrust range0~10 mN
    Nozzle inlet diameter, D0.112 mm
    Nozzle exit diameter, Do0.5 mm
    Flow rate range0~13.72 μg/s
    Nozzle exit gas velocity, Vcg700 m/s
    Nozzle inlet pressure, p00.6 MPa
    Nozzle exit pressure, pe1.98 Kpa
    Needle valve tip angle, αTE30°
    Electromagnetic valve suction control accuracy10 μN
    Table 6. Thrust of the microthruster parameters
    ParametersValue
    Satellite mass1 050 kg
    Satellite body diameter3 200 mm
    Satellite body altitude840 mm
    Solar panel diameter5 300 mm
    Telescope diameter400 mm
    Table 7. Satellite geometric parameters
    Modal orderNatural frequency/Hz
    714.53
    815.17
    919.89
    1021.27
    1123.75
    1224.21
    1326.44
    1430.38
    1531.84
    1632.45
    Table 8. Non-zero modal analysis results
    Zhenglin YANG, Qing LI, Shaolong DENG, Chen WANG, Zhaoguo ZHANG, Lei LIU, Caiwen MA. Modeling of Microvibration Mechanism of Drag-free Control System for Space Gravitational Wave Detection Satellites (Invited)[J]. Acta Photonica Sinica, 2025, 54(2): 0254102
    Download Citation