• Photonics Research
  • Vol. 13, Issue 4, 845 (2025)
Daniel Zepeda, Yucheng Li, and Yi Xue*
Author Affiliations
  • Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Dr., Davis, California 95616, USA
  • show less
    DOI: 10.1364/PRJ.544387 Cite this Article Set citation alerts
    Daniel Zepeda, Yucheng Li, Yi Xue, "Scattering correction through Fourier-domain intensity coupling in two-photon microscopy (2P-FOCUS)," Photonics Res. 13, 845 (2025) Copy Citation Text show less
    References

    [1] T. Wang, C. Wu, D. G. Ouzounov. Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse brain. eLife, 9, e53205(2020).

    [2] N. Ji. Adaptive optical fluorescence microscopy. Nat. Methods, 14, 374-380(2017).

    [3] M. J. Booth. Adaptive optics in microscopy. Philos. Trans. A Math. Phys. Eng. Sci., 365, 2829-2843(2007).

    [4] L. Streich, J. C. Boffi, L. Wang. High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy. Nat. Methods, 18, 1253-1258(2021).

    [5] C. Rodríguez, A. Chen, J. A. Rivera. An adaptive optics module for deep tissue multiphoton imaging in vivo. Nat. Methods, 18, 1259-1264(2021).

    [6] M. M. Qureshi, J. Brake, H.-J. Jeon. In vivo study of optical speckle decorrelation time across depths in the mouse brain. Biomed. Opt. Express, 8, 4855-4864(2017).

    [7] S. Gigan, O. Katz, H. B. de Aguiar. Roadmap on wavefront shaping and deep imaging in complex media. J. Phys. Photon., 4, 042501(2022).

    [8] S. Yoon, M. Kim, M. Jang. Deep optical imaging within complex scattering media. Nat. Rev. Phys., 2, 141-158(2020).

    [9] R. Horstmeyer, H. Ruan, C. Yang. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics, 9, 563-571(2015).

    [10] A. P. Mosk, A. Lagendijk, G. Lerosey. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics, 6, 283-292(2012).

    [11] I. M. Vellekoop. Feedback-based wavefront shaping. Opt. Express, 23, 12189-12206(2015).

    [12] S. Kang, P. Kang, S. Jeong. High-resolution adaptive optical imaging within thick scattering media using closed-loop accumulation of single scattering. Nat. Commun., 8, 2157(2017).

    [13] S. Yoon, H. Lee, J. H. Hong. Laser scanning reflection-matrix microscopy for aberration-free imaging through intact mouse skull. Nat. Commun., 11, 5721(2020).

    [14] A. Boniface, J. Dong, S. Gigan. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix. Nat. Commun., 11, 6154(2020).

    [15] N. Wijethilake, M. Anandakumar, C. Zheng. DEEP-squared: deep learning powered de-scattering with excitation patterning. Light Sci. Appl., 12, 228(2023).

    [16] A. Escobet-Montalbán, R. Spesyvtsev, M. Chen. Wide-field multiphoton imaging through scattering media without correction. Sci. Adv., 4, eaau1338(2018).

    [17] Y. Xue, K. P. Berry, J. R. Boivin. Scattering reduction by structured light illumination in line-scanning temporal focusing microscopy. Biomed. Opt. Express, 9, 5654-5666(2018).

    [18] Y. Xue, D. Ren, L. Waller. Three-dimensional bi-functional refractive index and fluorescence microscopy (BRIEF). Biomed. Opt. Express, 13, 5900-5908(2022).

    [19] Y. Xue, J. R. Boivin, D. N. Wadduwage. Multiline orthogonal scanning temporal focusing (mosTF) microscopy for scattering reduction in in vivo brain imaging. Sci. Rep., 14, 10954(2024).

    [20] C. Zheng, J. K. Park, M. Yildirim. De-scattering with excitation patterning (DEEP) in temporal focusing microscopy. Bio-Optics: Design and Application, DTh2A–6(2021).

    [21] Z. Wei, J. R. Boivin, Y. Xue. De-scattering deep neural network enables fast imaging of spines through scattering media by temporal focusing microscopy. Res. Sq.(2023).

    [22] J. Tang, R. N. Germain, M. Cui. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique. Proc. Natl. Acad. Sci. USA, 109, 8434-8439(2012).

    [23] I. N. Papadopoulos, J.-S. Jouhanneau, J. F. A. Poulet. Scattering compensation by focus scanning holographic aberration probing (F-SHARP). Nat. Photonics, 11, 116-123(2016).

    [24] M. A. May, N. Barré, K. K. Kummer. Fast holographic scattering compensation for deep tissue biological imaging. Nat. Commun., 12, 4340(2021).

    [25] Z. Qin, Z. She, C. Chen. Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping. Nat. Biotechnol., 40, 1663-1671(2022).

    [26] D. Akbulut, T. J. Huisman, E. G. van Putten. Focusing light through random photonic media by binary amplitude modulation. Opt. Express, 19, 4017-4029(2011).

    [27] D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express, 20, 1733-1740(2012).

    [28] T. Zhao, S. Ourselin, T. Vercauteren. High-speed photoacoustic-guided wavefront shaping for focusing light in scattering media. Opt. Lett., 46, 1165-1168(2021).

    [29] A. Drémeau, A. Liutkus, D. Martina. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. Opt. Express, 23, 11898-11911(2015).

    [30] X. Zhang, P. Kner. Binary wavefront optimization using a genetic algorithm. J. Opt., 16, 125704(2014).

    [31] K. Nam, J.-H. Park. Increasing the enhancement factor for DMD-based wavefront shaping. Opt. Lett., 45, 3381-3384(2020).

    [32] J. Yang, Q. He, L. Liu. Anti-scattering light focusing by fast wavefront shaping based on multi-pixel encoded digital-micromirror device. Light Sci. Appl., 10, 149(2021).

    [33] O. Katz, E. Small, Y. Silberberg. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nat. Photonics, 6, 549-553(2012).

    [34] S. Jeong, Y.-R. Lee, W. Choi. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering. Nat. Photonics, 12, 277-283(2018).

    [35] M. Ren, J. Chen, D. Chen. Aberration-free 3D imaging via DMD-based two-photon microscopy and sensorless adaptive optics. Opt. Lett., 45, 2656-2659(2020).

    [36] D. Chen, M. Ren, D. Zhang. Design of a multi-modality DMD-based two-photon microscope system. Opt. Express, 28, 30187-30198(2020).

    [37] W. H. Lee. Binary computer-generated holograms. Appl. Opt., 18, 3661-3669(1979).

    [38] M. J. Booth. Wavefront sensorless adaptive optics for large aberrations. Opt. Lett., 32, 5-7(2007).

    [39] D. Kim, W. Choi, M. Kim. Implementing transmission eigenchannels of disordered media by a binary-control digital micromirror device. Opt. Commun., 330, 35-39(2014).

    [40] Y. Xue, L. Waller, H. Adesnik. Three-dimensional multi-site random access photostimulation (3D-MAP). eLife, 11, e73266(2022).

    [41] R. G. Baraniuk. Compressive sensing [lecture notes]. IEEE Signal Process. Mag., 24, 118-121(2007).

    [42] Q. Geng, D. Wang, P. Chen. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun., 10, 2179(2019).

    [43] Y. Wang, H. Li, Q. Hu. Aberration-corrected three-dimensional non-inertial scanning for femtosecond lasers. Opt. Express, 28, 29904-29917(2020).

    [44] I. Freund, I. M. Rosenbluh, S. Feng. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett., 61, 2328-2331(1988).

    [45] C.-K. Tung, Y. Sun, W. Lo. Effects of objective numerical apertures on achievable imaging depths in multiphoton microscopy. Microsc. Res. Tech., 65, 308-314(2004).

    [46] M. Kondo, K. Kobayashi, M. Ohkura. Two-photon calcium imaging of the medial prefrontal cortex and hippocampus without cortical invasion. eLife, 6, e26839(2017).

    [47] J. Cheng, C. Gu, D. Zhang. High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device. Opt. Lett., 40, 4875-4878(2015).

    Daniel Zepeda, Yucheng Li, Yi Xue, "Scattering correction through Fourier-domain intensity coupling in two-photon microscopy (2P-FOCUS)," Photonics Res. 13, 845 (2025)
    Download Citation