• Photonics Research
  • Vol. 13, Issue 5, 1137 (2025)
Weihua Song1,2,3, Yu Wen1,2,3, Qian Zhang1,2,3,4,*, Xin Zhang1,2,3,5,*, and Pu Wang1,2,3,6,*
Author Affiliations
  • 1Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing 100124, China
  • 2Key Laboratory of Trans-scale Laser Manufacturing Technology, Beijing University of Technology, Beijing 100124, China
  • 3School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China
  • 4e-mail: zhangqian09236@bjut.edu.cn
  • 5e-mail: zhangxin940425@bjut.edu.cn
  • 6e-mail: wangpuemail@bjut.edu.cn
  • show less
    DOI: 10.1364/PRJ.547419 Cite this Article Set citation alerts
    Weihua Song, Yu Wen, Qian Zhang, Xin Zhang, Pu Wang, "All-fiber-structure high-power mid-infrared gas-filled hollow-core-fiber amplified spontaneous emission source," Photonics Res. 13, 1137 (2025) Copy Citation Text show less
    References

    [1] Y. Wang, Y. Feng, A. I. Adamu. Mid-infrared photoacoustic gas monitoring driven by a gas-filled hollow-core fiber laser. Sci. Rep., 11, 3512(2021).

    [2] N. M. Fried. Recent advances in infrared laser lithotripsy [Invited]. Biomed. Opt. Express, 9, 4552-4568(2018).

    [3] B. M. Walsh, H. R. Lee, N. P. Barnes. Mid-infrared lasers for remote sensing applications. J. Lumin., 169, 400-405(2016).

    [4] W. Huang, Z. Wang, Z. Zhou. Fiber laser source of 8  W at 3.1  μm based on acetylene-filled hollow-core silica fibers. Opt. Lett., 47, 2354-2357(2022).

    [5] W. Huang, Z. Zhou, Y. Cui. 4.5  W mid-infrared light source based on acetylene-filled hollow-core fibers. Opt. Laser Technol., 151, 108090(2022).

    [6] M. Xu, F. Yu, J. Knight. Mid-infrared 1  W hollow-core fiber gas laser source. Opt. Lett., 42, 4055-4058(2017).

    [7] W. H. Song, X. Zhang, Q. Zhang. 21.8  W acetylene-filled hollow-core anti-resonant fiber amplified spontaneous emission source at 3.1  μm. Opt. Lett., 49, 3636-3639(2024).

    [8] Y. Cui, Z. Wang, Z. Zhou. Towards high-power densely step-tunable mid-infrared fiber source from 4.27 to 4.43  μm in CO2-filled anti-resonant hollow-core silica fibers. J. Lightwave Technol., 40, 2503-2510(2022).

    [9] Y. L. Cui, W. Huang, Z. F. Wang. 4.3  μm fiber laser in CO2-filled hollow-core silica fibers. Optica, 6, 951-954(2019).

    [10] W. H. Song, J. Y. Yao, X. Zhang. 4.3  μm high-power amplified spontaneous emission fiber source based on CO2-filled nested hollow-core anti-resonant fiber. Opt. Express, 32, 14532-14540(2024).

    [11] Z. Zhou, Y. Cai, W. Huang. Nanosecond fiber laser step-tunable from 3.87 to 4.5  μm in HBr-filled hollow-core silica fibers. J. Lightwave Technol., 41, 333-340(2023).

    [12] Z. Zhou, W. Huang, Y. Cui. 3.1  W mid-infrared fiber laser at 4.16  μm based on HBr-filled hollow-core silica fibers. Opt. Lett., 47, 5785-5788(2022).

    [13] F. B. A. Aghbolagh, V. Nampoothiri, B. Debord. Mid IR hollow core fiber gas laser emitting at 4.6  μm. Opt. Lett., 44, 383-386(2019).

    [14] S. Xie, R. Pennetta, P. St.J. Russell. Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber. Optica, 3, 277-282(2016).

    [15] Y. L. Cui, Z. Zhou, W. Huang. Quasi-all-fiber structure CW mid-infrared laser emission from gas-filled hollow-core silica fibers. Opt. Laser Technol., 121, 105794(2020).

    [16] W. Huang, Y. L. Cui, Z. Y. Zhou. Towards all-fiber structure pulsed mid-infrared laser by gas-filled hollow-core fibers. Chin. Opt. Lett., 17, 091402(2019).

    [17] Z. Zhang, R. P. Li, C. Y. Wang. Fusion splicing of hollow-core to standard single-mode fibers using a gradient-index bridge fiber. J. Opt. Technol., 90, 42-45(2023).

    [18] C. Y. Wang, R. W. Yu, B. Debord. Ultralow-loss fusion splicing between negative curvature hollow-core fibers and conventional SMFs with a reverse-tapering method. Opt. Express, 29, 22470-22478(2021).

    [19] C. Zhang, E. N. Fokoua, S. Fu. Angle-spliced SMF to hollow core fiber connection with optimized back-reflection and insertion loss. J. Lightwave Technol., 40, 6474-6479(2022).

    [20] C. Y. Wang, R. W. Yu, C. Xiong. Ultralow-loss fusion splicing between antiresonant hollow-core fibers and antireflection-coated single-mode fibers with low return loss. Opt. Lett., 48, 1120-1123(2023).

    [21] R. W. Yu, C. Y. Wang, F. Benabid. Robust mode matching between structurally dissimilar optical fiber waveguides. ACS Photon., 8, 857-863(2021).

    [22] X. Zhang, W. H. Song, Z. H. Dong. Low loss nested hollow-core anti-resonant fiber at 2  μm spectral range. Opt. Lett., 47, 589-592(2022).

    [23] M. Herman, A. Campargue, M. I. E. Idrissi. Vibrational spectroscopic database on acetylene, X˜g+ (12C2H2, 12C2D2, and 13C2H2). J. Phys. Chem. Ref. Data, 32, 921-1361(2003).

    [24] https://hitran.iao.ru. https://hitran.iao.ru

    Weihua Song, Yu Wen, Qian Zhang, Xin Zhang, Pu Wang, "All-fiber-structure high-power mid-infrared gas-filled hollow-core-fiber amplified spontaneous emission source," Photonics Res. 13, 1137 (2025)
    Download Citation