• Journal of the Chinese Ceramic Society
  • Vol. 52, Issue 12, 3856 (2024)
ZHANG Feng, ZHANG Runjie, LV Shichao, and ZHOU Shifeng*
Author Affiliations
  • State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
  • show less
    DOI: 10.14062/j.issn.0454-5648.20240379 Cite this Article
    ZHANG Feng, ZHANG Runjie, LV Shichao, ZHOU Shifeng. Research Progress on High Density Glass Scintillators for High-Energy Radiation Detection[J]. Journal of the Chinese Ceramic Society, 2024, 52(12): 3856 Copy Citation Text show less
    References

    [2] YANAGIDA T. Inorganic scintillating materials and scintillation detectors[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2018, 94(2): 75-97.

    [4] FUJITA T, KATAOKA J, KISHIMOTO A, et al. Development of prototype PET scanner using dual-sided readout DOI-PET modules[J]. J Inst, 2014, 9(12): P12015.

    [5] GLODO J, WANG Y M, SHAWGO R, et al. New developments in scintillators for security applications[C]//24th international conference on the application of accelerators in research and industry (CAARI). Fort Worth, TX. 2016: 285-290.

    [6] IDOETA R, HERRANZ M, ALEGRA N, et al. Possibilities of the use of CeBr3 scintillation detectors for the measurement of the content of radionuclides in samples for environmental monitoring[J]. Appl Radiat Isot, 2021, 176: 109881.

    [7] LIN Z Y, LV S C, YANG Z M, et al. Structured scintillators for efficient radiation detection[J]. Adv Sci, 2022, 9(2): e2102439.

    [10] MCGREGOR D S. Materials for gamma-ray spectrometers: Inorganic scintillators[J]. Annu Rev Mater Res, 2018, 48: 245-277.

    [11] MOSZYSKI M. Inorganic scintillation detectors in -ray spectrometry[J]. Nucl Instrum Meth Phys Res Sect A Accel Spectrometers Detect Assoc Equip, 2003, 505(1-2): 101-110.

    [13] HU P, WANG Y, DU D, et al. GSHCAL at future e+ e-Higgs factories[J]. Nucl Instrum Methods Phys Res Sect A-Accel Spectrom Dect Assoc Equip, 2024, doi: 1059:168944.

    [15] TANG G, HUA Z H, QIAN S, et al. Optical and scintillation properties of aluminoborosilicate glass[J]. Opt Mater, 2022, 130: 112585.

    [16] VAN KIRK S E, MARTIN S W. Preparation and characterization of high-density PbO-Bi2O3-B2O3 glasses[J]. J Am Ceram Soc, 1992, 75(4): 1028-1031.

    [19] HE M, ZHANG Z H, CHEN X L, et al. Luminescence mechanism study of a potential scintillation crystal YBa3B9O18 [J]. Int J Mod Phys B, 2011, 25(12): 1637-1644.

    [20] ZHOU Y, CHEN J, BAKR O M, et al. Metal halide perovskites for X-ray imaging scintillators and detectors[J]. ACS Energy Lett, 2021, 6(2): 739-768.

    [21] YANAGIDA T. Study of rare-earth-doped scintillators[J]. Opt Mater, 2013, 35(11): 1987-1992.

    [22] TATSUMISAGO M, MINAMI T, TANAKA M. Rapid quenching technique using thermal-image furnace for glass preparation[J]. J Am Ceram Soc, 1981, 64(7): 97 -98.

    [23] NAKAUCHI D, OKADA G, KAWAGUCHI N, et al. Scintillation properties of RE2Hf2O7 (RE = La, Gd, Lu) single crystals prepared by xenon arc floating zone furnace[J]. Jpn J Appl Phys, 2018, 57(10): 100307.

    [24] SHIRATORI D, NAKAUCHI D, FUKUSHIMA H, et al. Photoluminescence and scintillation properties of Ce-doped Barium silicate glasses synthesized by the FZ method[J]. Opt Mater, 2020, 105: 109895.

    [25] SHEA J J. Smithells metal reference book, 8th ed [J]. IEEE Electr Insul Mag, 2005, 21(2): 56.

    [26] BENMORE C J, WEBER J K R. Aerodynamic levitation, supercooled liquids and glass formation[J]. Adv Phys X, 2017, 2(3): 717-736.

    [27] ZAMAN F, ROOH G, SRISITTIPOKAKUN N, et al. Scintillation and luminescence characteristics of Ce3+doped in Li2O-Gd2O3-BaO-B2O3 scintillating glasses[J]. Radiat Phys Chem, 2017, 130: 158-163.

    [28] LI L, SHAN Q, JIA W, et al. Optimization of the CEPC-AHCAL scintillator detector cells[J]. J Inst, 2021, 16(3): P03001.

    [31] SUN X Y, GAO P, WU S, et al. Luminescent properties and energy transfer of Ce3+-activated Li2O-B2O3-Gd2O3 scintillating glasses under VUV-UV and X-ray excitation[J]. Nucl Instrum Meth Phys Res Sect B Beam Interact Mater At, 2015, 350: 36-40.

    [32] NOVOTNY R W, BRINKMANN K T, BORISEVICH A, et al. Study of the new glass and glass ceramic stoichiometric and Gd3+-loaded BaO*2SiO2 (DSB: Ce) scintillation material for future calorimetry[C]//17th international conference on calorimetry in particle physics (CALOR). Daegu, SOUTH KOREA. 2016: 012034.

    [33] NOVOTNY R W, BRINKMANN K T, DORMENEV V, et al. Performance of DSB-a new glass and glass ceramic as scintillation material for future calorimetry[J]. J Phys: Conf Ser, 2019, 1162: 012023.

    [34] NOVOTNY R W, BRINKMANN K T, BORISEVICH A, et al. Study of the new glass and glass ceramic stoichiometric and Gd3+-loaded BaO*2SiO2(DSB: Ce) scintillation material for future calorimetry[J]. J Phys: Conf Ser, 2017, 928: 012034.

    [35] AUFFRAY E, AKCHURIN N, BENAGLIA A, et al. DSB: Ce3+scintillation glass for future[J]. J Phys: Conf Ser, 2015, 587: 012062.

    [36] WANG Q, YANG B, ZHANG Y P, et al. High light yield Ce3+-doped dense scintillating glasses[J]. J Alloys Compd, 2013, 581: 801-804.

    [37] LIU L W, ZHOU Q L, SHAO C Y, et al. Scintillation properties of Ce3+ doped SiO2-Al2O3-Gd2O3 glass[J]. Acta Phys Sin, 2015, 64(16): 167802.

    [38] RAJARAMAKRISHNA R, KAEWJAENG S, KAEWKHAO J, et al. Investigation of XANES study and energy transport phenomenon of Gd3+ to Ce3+ in CaO-SiO2-B2O3 glasses[J]. Opt Mater, 2020, 102: 109826.

    [39] LIU L W, SHAO C Y, ZHANG Y, et al. Scintillation properties and X-ray irradiation hardness of Ce3+-doped Gd2O3-based scintillation glass[J]. J Lumin, 2016, 176: 1-5.

    [40] LERTLOYPANYACHAI P, PATTANABOONMEE N, CHEWPRADITKUL W, et al. Luminescence and scintillation response of Ce3+-doped oxide glasses with high Gd2O3 content[J]. Key Eng Mater, 2016, 675-676: 434-437.

    [41] BOSZE E J, HIRATA G A, SHEA-ROHWER L E, et al. Improving the efficiency of a blue-emitting phosphor by an energy transfer from Gd3+ to Ce3+[J]. J Lumin, 2003, 104(1-2): 47-54.

    [42] YAO Y X, LIU L W, ZHANG Y, et al. Optical properties of Ce3+ doped fluorophosphates scintillation glasses[J]. Opt Mater, 2016, 51: 94-97.

    [43] DAFINEI I, AUFFRAY E, LECOQ P, et al. Heavy fluoride glasses as an alternative to crystals in high energy physics calorimetry[J]. MRS Online Proc Libr, 1994, 348(1): 217-221.

    [44] ZOU W C, MARTIN S W, SCHWELLENBACH D, et al. New high-density fluoride glasses doped with CeF3[J]. J Non Cryst Solids, 1995, 184: 84-92.

    [45] AUFFRAY E, BOUTTET D, DAFINEI I, et al. Cerium doped heavy metal fluoride glasses, a possible alternative for electromagnetic calorimetry[J]. Nucl Instrum Meth Phys Res Sect A Accel Spectrometers Detect Assoc Equip, 1996, 380(3): 524-536.

    [46] SHAUKAT S F, MCKINLAY K J, FLOWER P S, et al. Optical and physical characteristics of HBLAN fluoride glasses containing cerium[J]. J Non Cryst Solids, 1999, 244(2-3): 197-204.

    [47] ITO G, KIMURA H, SHIRATORI D, et al. Optical and scintillation properties of Ce-doped 20CsCl-20BaCl2-60ZnCl2 glasses[J]. Optik, 2021, 226: 165825.

    [48] STRUEBING C, BECKERT M B, NADLER J H, et al. Optimization of a gadolinium-rich oxyhalide glass scintillator for gamma ray spectroscopy[J]. J Am Ceram Soc, 2018, 101(3): 1116-1121.

    [49] CHEWPRADITKUL W, PATTANABOONMEE N, YAWAI N, et al. Luminescence and scintillation properties of Ce3+-doped SiO2-Al2O3-BaF2-Gd2O3 glasses[J]. Opt Mater, 2019, 98: 109468.

    [50] LERTLOYPANYACHAI P, CHEWPRADITKUL W, PATTANABOONMEE N, et al. Luminescence and light yield of Ce3+-doped (60-x)SiO2-xBaF2-20Al2O3-20Gd2O3 scintillation glasses: The effect of BaF2 admixture[J]. Optik, 2023, 289: 171272.

    [51] CHEWPRADITKUL W, HE X, CHEN D, et al. Luminescence and scintillation of Ce3+-doped oxide glass with high Gd2O3 concentration[J]. Phys Status Solidi A, 2011, 208(12): 2830-2832.

    [52] SUN X Y, LIU X J, XIAO Z H, et al. Enhancement of emission intensity in Ce3+-activated aluminoborosilicate scintillating glass synthesized in air[J]. J Am Ceram Soc, 2020, 103(2): 768-772.

    [53] SUN X Y, XIAO Z H, WU Y T, et al. Role of Al3+ on tuning optical properties of Ce3+-activated borosilicate scintillating glasses prepared in air[J]. J Am Ceram Soc, 2018, 101(10): 4480-4485.

    [54] GKE M, BURGAZ G, GKE A G. Cerium doped glasses containing reducing agent for enhanced luminescence[J]. J Lumin, 2020, 222: 117175.

    [55] SHIRATORI D, NAKAUCHI D, KATO T, et al. Radiation-induced scintillation properties of Ce-doped lutetium aluminosilicate glasses doped with cerium prepared by using a xenon image furnace[J]. J Non Cryst Solids, 2023, 607: 122227.

    [57] LI W C, CHEN D P, HU L L, et al. Scintillation and photoluminescence performance of Ce3+-doped high gadolinium oxyfluoride glass for circular electron-positron collider (CEPC)[J]. Ceram Int, 2024, 50(11): 19814-19821.

    [58] JIANG C, ZENG Q J, GAN F X. Scintillation properties of cerium-doped germanate glass[C]//Conference on hard X-ray, gamma-ray, and neutron detector physics. SAN DIEGO, CA. 2000: 309-315.

    [59] SUN X Y, YE Z P, WU Y T, et al. A simple and highly efficient method for synthesis of Ce3+-activated borogermanate scintillating glasses in air[J]. J Am Ceram Soc, 2014, 97(11): 3388-3391.

    [60] JIANG C, ZHANG J Z, GAN F X. Scintillating luminescence of cerium-doped dense oxide glass[C]//Conference on hard X-ray, gamma-ray, and neutron detector physics. DENVER, CO. 1999: 462-469.

    [61] JIANG C, ZENG Q J, GAN F X. New scintillator: Cerium-doped dense oxide glass[C]//7th photonics for space environments conference (PSE VII). SAN DIEGO, CA. 2000: 329-335.

    [62] JIANG C, DENG P Z, ZHANG J Z, et al. Radioluminescence of Ce3+-doped B2O3-SiO2-Gd2O3-BaO glass[J]. Phys Lett A, 2004, 323(3-4): 323-328.

    [63] SUN X Y, XIAO Z H, WU Y T, et al. Fast Ce3+-activated borosilicate glass scintillators prepared in air atmosphere[J]. Ceram Int, 2017, 43(3): 3401-3404.

    [64] BOONTUENG P, RITJOHO N, WANTANA N, et al. Fast scintillating Ce3+ doped gadolinium aluminum fluoroborate glass for calorimetry in proton CT prototype: A preliminary work[J]. Radiat Meas, 2023, 163: 106937.

    [65] WU T, HUA Z H, TANG G, et al. Enhanced photoluminescence quantum yield of Ce3+-doped aluminum-silicate glasses for scintillation application[J]. J Am Ceram Soc, 2023, 106(1): 476-487.

    [66] ZHAO J T, HUANG L H, ZHAO S L, et al. Enhanced luminescence in Tb3+-doped germanate glass ceramic scintillators containing CaF2 nanocrystals[J]. J Am Ceram Soc, 2019, 102(4): 1720-1725.

    [67] FU J, KOBAYASHI M, PARKER J M. Terbium-activated heavy scintillating glasses[J]. J Lumin, 2008, 128(1): 99-104.

    [68] WU Y H, CHEN D Y, LI Y, et al. Scintillation properties of Ce3+/Tb3+ Co-doped oxyfluoride aluminosilicate glass for exploration of X-ray imaging[J]. J Lumin, 2022, 245: 118762.

    [69] SUN X Y, JIANG D G, WANG W F, et al. Luminescence properties of B2O3-GeO2-Gd2O3 scintillating glass doped with rare-earth and transition-metal ions[J]. Nucl Instrum Meth Phys Res Sect A Accel Spectrometers Detect Assoc Equip, 2013, 716: 90-95.

    [70] SUN X Y, YU X G, WANG W F, et al. Luminescent properties of Tb3+-activated B2O3-GeO2-Gd2O3 scintillating glasses[J]. J Non Cryst Solids, 2013, 379: 127-130.

    [71] SUN X Y, YANG Q M, GAO P, et al. Luminescence, energy transfer properties of Tb/Gd3+-coactivated oxyfluoride borogermanate scintillating glasses[J]. J Lumin, 2015, 165: 40-45.

    [72] SUN X Y, YU X G, JIANG D G, et al. Spectroscopic and energy transfer properties of Dy3+-doped, Tb3+/Dy3+-codoped dense oxyfluoride borogermanate scintillating glasses[J]. J Appl Phys, 2016, 119(23): 233103.

    [73] SUN X Y, WEN Z X, LIU X J, et al. Superdense Tb3+-activated borogermanate-tellurite scintillating glasses[J]. J Am Ceram Soc, 2019, 102(3): 896-900.

    [74] SUN X Y, ZHOU M J, DENG C B, et al. Glass forming regions and concentration-dependent luminescence properties of Tb3+-activated tellurium-lutetium-tungsten glasses[J]. J Rare Earths, 2021, 39(2): 146-150.

    [75] HAN T T, SUN X Y, YU J T, et al. Optical properties of Dy2O3, Tb4O7 singly doped, Dy2O3/Tb4O7 codoped borogermanate-tellurite glasses for radiation application[J]. J Lumin, 2022, 244: 118737.

    [78] WEN Z X, LI L J, HUANG W J, et al. Effect of Al powder on Tb3+-doped borogermanate glass for X-ray detection[J]. J Lumin, 2022, 250: 119095.

    [79] QIAN S, HUANG L H, ZHAO S L, et al. Luminescent properties of Tb3+ doped high density borogermanate scintillating glasses[J]. J Rare Earths, 2017, 35(8): 787-790.

    [80] STRUEBING C, LEE G, WAGNER B, et al. Synthesis and luminescence properties of Tb doped LaBGeO5 and GdBGeO5 glass scintillators[J]. J Alloys Compd, 2016, 686: 9-14.

    [81] HAN T T, SUN X Y, LAI X Q, et al. Role of Gd2O3 on tailoring structural and optical properties of Tb3+-activated borogermanate- tellurite glasses[J]. Radiat Phys Chem, 2021, 189: 109734.

    [82] ZHAO J T, HUANG L H, LIANG T Y, et al. Luminescent properties of Eu3+ doped heavy tellurite scintillating glasses[J]. J Lumin, 2019, 205: 342-345.

    [83] FU J, KOBAYASHI M, SUGIMOTO S, et al. Eu3+-activated heavy scintillating glasses[J]. Mater Res Bull, 2008, 43(6): 1502-1508.

    [84] WANTANA N, KAEWNUAM E, RUANGTAWEEP Y, et al. High density tungsten gadolinium borate glasses doped with Eu3+ ion for photonic and scintillator applications[J]. Radiat Phys Chem, 2020, 172: 108868.

    [86] SUN X Y, YE Z P, ZHANG Z J, et al. Energy transfer study on dense Eu3+/Tb3+-coactivated oxyfluoride borogermanate scintillating glasses[J]. J Am Ceram Soc, 2015, 98(3): 781-787.

    [87] DENG C B, ZHANG M, LAN T, et al. Spectroscopic investigation on Eu3+-doped TeO2-Lu2O3-WO3 optical glasses[J]. J Non Cryst Solids, 2021, 554: 120565.

    [88] WANG X X, HUANG L H, ZHAO S L, et al. Eu3+ doped heavy germanate scintillating glasses[J]. J Lumin, 2018, 196: 256-258.

    [89] SUN X Y, YANG Q M, XIE P, et al. Effects of substitution of BaF2 for GdF3 on optical properties of dense oxyfluoride borogermanate scintillating glasses[J]. J Rare Earths, 2015, 33(8): 800-804.

    [90] SUN X Y, ZHANG X, CHEN H H, et al. Investigation on the luminescent properties of Eu3+-activated dense oxyfluoride borogermanate scintillating glasses[J]. J Non Cryst Solids, 2014, 404: 162-166.

    [91] DAMDEE B, KIRDSIRI K, KIM H J, et al. Physical and photoluminescence investigations of Eu3+ doped gadolinium borate scintillating glass[J]. Radiat Phys Chem, 2022, 200: 110386.

    [92] WANTANA N, KAEWNUAM E, DAMDEE B, et al. Energy transfer based emission analysis of Eu3+ doped Gd2O3-CaO-SiO2-B2O3 glasses for laser and X-rays detection material applications[J]. J Lumin, 2018, 194: 75-81.

    [93] CHEN X Y, HUANG L H, LI B, et al. Luminescence properties of Pr3+ doped high density germanate scintillating glasses for fast-event X-ray detection[J]. Ceram Int, 2023, 49(1): 1148-1153.

    [94] MUGONI C, GATTO C, PLA-DALMAU A, et al. Structure and luminescence properties of Dy2O3 doped bismuth-borate glasses[J]. J Non Cryst Solids, 2017, 471: 295-300.

    [95] KLIMESZ B, LISIECKI R, RYBA-ROMANOWSKI W. Sm3+-doped oxyfluorotellurite glasses-spectroscopic, luminescence and temperature sensor properties[J]. J Alloys Compd, 2019, 788: 658-665.

    [96] HERRMANN A, FRIEDRICH D, ZSCHECKEL T, et al. Luminescence properties of Sm3+ doped alkali/earth alkali orthoborates of the type XZBO3 with X = Li, Na, Cs and Z = Ca, Sr, Ba[J]. J Lumin, 2019, 214: 116550.

    [97] WANTANA N, KAEWNUAM E, KIM H J, et al. X-ray/proton and photoluminescence behaviors of Sm3+ doped high-density tungsten gadolinium borate scintillating glass[J]. J Alloys Compd, 2020, 849: 156574.

    [98] LIU H, ZHAO J T, HUANG L H, et al. Luminescence properties of Er3+ doped high density germanate glass scintillators for X-ray computed tomography (CT)[J]. Ceram Int, 2024, 50(5): 8535-8538.

    ZHANG Feng, ZHANG Runjie, LV Shichao, ZHOU Shifeng. Research Progress on High Density Glass Scintillators for High-Energy Radiation Detection[J]. Journal of the Chinese Ceramic Society, 2024, 52(12): 3856
    Download Citation