• Photonics Research
  • Vol. 12, Issue 10, 2311 (2024)
Wenzhi Li1, Jiaran Qi1,*, and Andrea Alu2,3,4
Author Affiliations
  • 1Department of Microwave Engineering, School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China
  • 2Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, USA
  • 3Physics Program, Graduate Center of the City University of New York, New York, New York 10016, USA
  • 4e-mail: aalu@gc.cuny.edu
  • show less
    DOI: 10.1364/PRJ.532222 Cite this Article Set citation alerts
    Wenzhi Li, Jiaran Qi, Andrea Alu, "Single-pixel super-resolution with a space–time modulated computational metasurface imager," Photonics Res. 12, 2311 (2024) Copy Citation Text show less
    References

    [1] J. Hunt, T. Driscoll, A. Mrozack. Metamaterial apertures for computational imaging. Science, 339, 310-313(2013).

    [2] C. M. Watts, D. Shrekenhamer, J. Montoya. Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics, 8, 605-609(2014).

    [3] D. M. Mittleman. Twenty years of terahertz imaging. Opt. Express, 26, 9417-9431(2018).

    [4] S. S. Ahmed, A. Schiessl, F. Gumbmann. Advanced microwave imaging. IEEE Microw. Mag., 13, 26-43(2012).

    [5] A. V. Diebold, M. F. Imani, T. Fromenteze. Passive microwave spectral imaging with dynamic metasurface apertures. Optica, 7, 527-536(2020).

    [6] W. Li, X. Hu, J. Wu. Dual-color terahertz spatial light modulator for single-pixel imaging. Light Sci. Appl., 11, 191(2022).

    [7] R. I. Stantchev, X. Yu, T. Blu. Real-time terahertz imaging with a single-pixel detector. Nat. Commun., 11, 2535(2020).

    [8] F. Guan, X. Guo, K. Zeng. Overcoming losses in superlenses with synthetic waves of complex frequency. Science, 381, 766-771(2023).

    [9] X. Chen, S. Zhong, Y. Hou. Superresolution structured illumination microscopy reconstruction algorithms: a review. Light Sci. Appl., 12, 172(2023).

    [10] T. J. Huang, H. H. Tang, L. Z. Yin. Experimental demonstration of an ultra-broadband subwavelength resolution probe from microwave to terahertz regime. Opt. Lett., 43, 3646-3649(2018).

    [11] N. Fang, H. Lee, C. Sun. Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534-537(2005).

    [12] S. Durant, Z. Liu, J. M. Steele. Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit. J. Opt. Soc. Am. B, 23, 2383-2392(2006).

    [13] Y. Choi, T. D. Yang, C. Fang-Yen. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium. Phys. Rev. Lett., 107, 023902(2011).

    [14] K. Wu, G. P. Wang. One-dimensional Fibonacci grating for far-field super-resolution imaging. Opt. Lett., 38, 2032-2034(2013).

    [15] M. G. L. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82-87(2000).

    [16] Z. Zhang, X. Ma, J. Zhong. Single-pixel imaging by means of Fourier spectrum acquisition. Nat. Commun., 6, 6225(2015).

    [17] Z. Zhang, S. Liu, J. Peng. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements. Optica, 5, 315-319(2018).

    [18] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics, 7, 739-745(2013).

    [19] G. Zheng, C. Shen, S. Jiang. Concept, implementations and applications of Fourier ptychography. Nat. Rev. Phys., 3, 207-223(2021).

    [20] Y. Fan, J. Sun, Y. Shu. Efficient synthetic aperture for phaseless Fourier ptychographic microscopy with hybrid coherent and incoherent illumination. Laser Photonics Rev., 17, 2200201(2023).

    [21] M. Liu, Y. Lei, L. Yu. Super-resolution optical microscopy using cylindrical vector beams. Nanophotonics, 11, 3395-3420(2022).

    [22] F. Tamburini, G. Anzolin, G. Umbriaco. Overcoming the Rayleigh criterion limit with optical vortices. Phys. Rev. Lett., 97, 163903(2006).

    [23] L. Li, F. Li. Beating the Rayleigh limit: orbital-angular-momentum-based super-resolution diffraction tomography. Phys. Rev. E, 88, 033205(2013).

    [24] A. M. Kingston, A. Aminzadeh, L. Roberts. Optimizing nonconfigurable, transversely displaced masks for illumination patterns in classical ghost imaging. Phys. Rev. E, 107, 023524(2023).

    [25] S. Sun, Q. He, J. Hao. Electromagnetic metasurfaces: physics and applications. Adv. Opt. Photonics, 11, 380-479(2019).

    [26] S. Wang, P. C. Wu, V. C. Su. A broadband achromatic metalens in the visible. Nat. Nanotechnol., 13, 227-232(2018).

    [27] A. Alù. Mantle cloak: invisibility induced by a surface. Phys. Rev. B, 80, 245115(2009).

    [28] X. Ni, Z. J. Wong, M. Mrejen. An ultrathin invisibility skin cloak for visible light. Science, 349, 1310-1314(2015).

    [29] Q. Song, X. Liu, C. W. Qiu. Vectorial metasurface holography. Appl. Phys. Rev., 9, 011311(2022).

    [30] Y. Wang, C. Pang, J. Qi. 3D reconfigurable vectorial holography via a dual-layer hybrid metasurface device. Laser Photonics Rev., 18, 2300832(2024).

    [31] T. J. Cui, M. Q. Qi, X. Wan. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl., 3, e218(2014).

    [32] Q. Ma, C. Liu, Q. Xiao. Information metasurfaces and intelligent metasurfaces. Photonics Insights, 1, R01(2022).

    [33] T. Gu, H. J. Kim, C. Rivero-Baleine. Reconfigurable metasurfaces towards commercial success. Nat. Photonics, 17, 48-58(2023).

    [34] L. Li, T. J. Cui, W. Ji. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun., 8, 197(2017).

    [35] L. Zhang, T. J. Cui. Space-time-coding digital metasurfaces: principles and applications. Research, 2021, 9802673(2021).

    [36] Y. Hadad, D. L. Sounas, A. Alu. Space-time gradient metasurfaces. Phys. Rev. B, 92, 100304(2015).

    [37] Y. Wang, A. Yu, Y. Cheng. Matrix diffractive deep neural networks merging polarization into meta-devices. Laser Photonics Rev., 18, 2300903(2024).

    [38] L. Zhang, X. Q. Chen, S. Liu. Space-time-coding digital metasurfaces. Nat. Commun., 9, 4334(2018).

    [39] X. Wang, V. S. Asadchy, S. Fan. Space–time metasurfaces for power combining of waves. ACS Photonics, 8, 3034-3041(2021).

    [40] X. Wang, A. Diaz-Rubio, H. Li. Theory and design of multifunctional space-time metasurfaces. Phys. Rev. Appl., 13, 044040(2020).

    [41] A. V. Diebold, M. F. Imani, T. Sleasman. Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures. Optica, 5, 1529-1541(2018).

    [42] W. J. Padilla, R. D. Averitt. Imaging with metamaterials. Nat. Rev. Phys., 4, 85-100(2022).

    [43] X. Ou, G. Zheng, C. Yang. Embedded pupil function recovery for Fourier ptychographic microscopy. Opt. Express, 22, 4960-4972(2014).

    [44] S. Jiang, P. Song, T. Wang. Spatial- and Fourier-domain ptychography for high-throughput bio-imaging. Nat. Protoc., 18, 2051-2083(2023).

    [45] M. A. Shaltout, V. M. Shalaev, M. L. Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).

    [46] O. Yurduseven, M. F. Imani, H. Odabasi. Resolution of the frequency diverse metamaterial aperture imager. Prog. Electromagn. Res., 150, 97-107(2015).

    [47] A. V. Oppenheim. Discrete-Time Signal Processing(1999).

    [48] R. W. Gerchberg. A practical algorithm for the determination of plane from image and diffraction pictures. Optik, 35, 237-246(1972).

    [49] W. Li, Q. Yu, J. Qiu. Intelligent wireless power transfer via a 2-bit compact reconfigurable transmissive-metasurface-based router. Nat. Commun., 15, 2807(2024).

    Wenzhi Li, Jiaran Qi, Andrea Alu, "Single-pixel super-resolution with a space–time modulated computational metasurface imager," Photonics Res. 12, 2311 (2024)
    Download Citation