• Matter and Radiation at Extremes
  • Vol. 5, Issue 1, 018202 (2020)
Choong-Shik Yooa)
Author Affiliations
  • Department of Chemistry, Institute of Shock Physics, and Materials Science and Engineering, Washington State University, Pullman, Washington 99164, USA
  • show less
    DOI: 10.1063/1.5127897 Cite this Article
    Choong-Shik Yoo. Chemistry under extreme conditions: Pressure evolution of chemical bonding and structure in dense solids[J]. Matter and Radiation at Extremes, 2020, 5(1): 018202 Copy Citation Text show less
    References

    [1] C. Sotin, J. J. Fortney, D. S. Spiegel. Structure of exoplanets. Proc. Natl. Acad. Sci. U. S. A., 111, 12622-12627(2014).

    [2] B. Buffett, D. Archer. Global inventory of methane clathrate. Earth Planet. Sci. Lett., 227, 185-199(2004).

    [3] C. S. Yoo, M. F. Nicol. Chemical and physical transformation of cyanogen at high pressures. J. Phys. Chem., 90, 6726-6731(1986).

    [4] S. Usuba, Y. Kakudate, M. Yoshida, S. Fujiwara, K. Tanaka, K. Aoki. Raman study of the solid-solid polymerization of acetylene at high pressure. J. Chem. Phys., 89, 529-534(1988).

    [5] R. Hoffmann, N. W. Ashcroft, X. D. Wen. Benzene under high pressure: A story of molecular crystals transforming to saturated networks, with a possible intermediate metallic phase. J. Am. Chem. Soc., 133, 9023-9025(2011).

    [6] H. M. Strong, F. P. Bundy, R. H. Wentorf, H. T. Hall. Man-made diamonds. Nature, 176, 51-55(1955).

    [7] A. K. McMahan, L. H. Yang, C. Mailhiot. Polymeric nitrogen. Phys. Rev. B, 46, 14419-14435(1992).

    [8] D. A. Dzivenko, R. Boehler, A. G. Gavriliuk, I. A. Trojan, M. I. Eremets. Single bonded cubic form of nitrogen. Nat. Mater., 3, 558-563(2004).

    [9] W. J. Evans, H. Cynn, V. Iota, M. J. Lipp, C. S. Yoo, J. P. Klepeis, B. J. Baer. Transformation of molecular nitrogen to nonmolecular phases at megabar pressures by direct laser heating. Phys. Rev. B, 76, 014113(2007).

    [10] H. Cynn, C. S. Yoo, V. Iota. Quartzlike carbon dioxide: An optically nonlinear extended solid at high pressures and temperatures. Science, 283, 1510-1512(1999).

    [11] S. Serra, E. Tosatti, S. Scandolo, G. L. Chiarotti, C. Cavazzoni. Pressure-induced solid carbonates from molecular CO2 by computer simulation. Science, 284, 788-790(1999).

    [12] G. Galli, C. Mailhiot, S. Carlson, H. Cynn, C. S. Yoo, D. Hausermann, M. F. Nicol, V. Iota, F. Gygi. Crystal structure of carbon dioxide at high pressure: “superhard” polymeric carbon dioxide. Phys. Rev. Lett., 83, 5527-5530(1999).

    [13] F. Datchi, S. Ninet, A. Salamat, B. Mallick. Structure of polymeric carbon dioxide CO2-V. Phys. Rev. Lett., 108, 125701-1-125701-4(2012).

    [14] Ph. Pruzan. Pressure effects on the hydrogen bond in ice up to 80. GPa, 322, 279-286(1994).

    [15] R. J. Hemley, H. K. Mao, M. S. Somayazulu, A. F. Goncharov, V. V. Struzhkin. Compression of ice to 210 gigapascales: Infrared evidence for a symmetric hydrogen-bonded phase. Science, 273, 218-220(1996).

    [16] D. Hausermann, R. LeToullec, E. Wotanint, P. Loubeyre, M. Hanfland. Modulated phases and proton centering in ice observed by x-ray diffraction up to 170 GPa. Nature, 397, 503-506(1999).

    [17] N. W. Ashcroft. Metallic hydrogen: A high-temperature superconductor?. Phys. Rev. Lett., 21, 1748-1749(1968).

    [18] I. A. Troyan, M. I. Eremets. Conductive dense hydrogen. Nat. Mater., 10, 927-931(2011).

    [19] I. F. Silvera, R. P. Dias. Observation of the Wigner-Huntington transition to metallic hydrogen. Science, 355, 715-718(2017).

    [20] Z. Zhao, B. Liu, Y. Liu, W. Tian, T. Cui, D. Ducan, F. Tan, D. Li, X. Huang, H. Yu. Pressure-induced metallization of dense (H2S)2H2 with high Tc superconductivity. Sci. Rep., 4, 6968-1-6968-6(2014).

    [21] A. P. Drozdov, S. I. Shylin, M. I. Eremets, V. Ksenfontov, I. A. Troyan. Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system. Nature, 525, 73-76(2015).

    [22] C. J. Pickard, R. J. Needs. Aluminium at terapascal pressures. Nat. Mater., 9, 624-627(2010).

    [23] M.-S. Miao, R. Hoffmann. High pressure electrides: A predictive chemical and physical theory. Acc. Chem. Res., 47, 1311-1317(2014).

    [24] R. Hoffmann, M.-S. Miao. High pressure electrides: The chemical nature of interstitial quasi-atoms. J. Am. Chem. Soc., 137, 3631-3637(2015).

    [25] R. J. Hemley, H.-K. Mao. The high-pressure dimension in earth and planetary science. Proc. Natl. Acad. Sci. U. S. A., 104, 9114-9115(2007).

    [26] J. Hemley, N. W. Ashcroft. The revealing role of pressure in the condensed matter. Phys. Today, 51, 26-32(1998).

    [27] R. Jeanloz. Physical chemistry at ultrahigh pressures and temperatures. Ann. Rev. Phys. Chem., 40, 237-259(1989).

    [28] C. J. Pickard, R. J. Needs. High-pressure phases of silane. Phys. Rev. Lett., 97, 045504--4(2006).

    [29] J. Lv, Y. Ma, L. Zhang, Y. Wang. Materials discovery at high pressures. Nat. Rev. Mater., 2, 17005(2017).

    [30] M. Valle, A. R. Oganov, A. O. Lyakhov. How evolutionary crystal structure prediction works-and why. Acc. Chem. Res., 44, 227-237(2011).

    [31] Z. Zurek, R. Hoffmann, A. R. Oganov, N. W. Ashcroft, A. O. Lyakhov. A little bit of lithium does a lot for hydrogen. Proc. Natl. Acad. Sci. U. S. A., 196, 17640-17643(2009).

    [32] C. S. Yoo. New states of matter and chemistry at extreme pressures: Low-Z extended solid. MRS Bull., 42, 724-728(2017).

    [33] C. S. Yoo. Physical and chemical transformations of highly compressed carbon dioxide at bond energies. Phys. Chem. Chem. Phys., 15, 7949-7966(2013).

    [34] H. Cynn, M. J. Lipp, W. J. Evans, E. F. O’Bannon, Zs. Jenei, S. T. Weir. Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar. Nat. Commun., 9, 3563-1-3563-6(2018).

    [35] A. Dewaele, O. Marie, F. Occelli, P. Loubeyre, M. Mesouar. Toroidal diamond anvil cell for detailed measurements under extreme static pressures. Nat. Commun., 9, 2-913-9(2018).

    [36] I. Snigireva, A. Abakumom, M. Hanfland, N. Dubrovinskaia, M. Bykov, B. Gasharova, P. Ershov, C. Prescher, V. B. Prakapenka, Y.-L. Mathis, A. Sniglrev, S. Turner, E. Bykova, L. Dubrovinsky, N. A. Solopova, S. Petitgirard, I. Chuvashova. Terapascal static pressure generation with ultrahigh yield strength nanodiamond. Sci. Adv., 2, e1600341-1-e1600341-12(2016).

    [37] W. J. Evans, C. S. Yoo, M. J. Lipp. Cryogenic loading of large volume presses for high-pressure experimentation and synthesis of novel materials. Rev. Sci. Instrum., 76, 053903-1-053903-4(2005).

    [38] H.-K. Mao, J. Xu. Moissanite: A window for high-pressure experiements. Science, 290, 783-785(2000).

    [39] J. Qin, X. Yang, W. Zhang, D. He, W. Li, W. Li, Y. Zou, Z. Wang, L. Lei. Portable high pressure sapphire anvil cell for gas hydrates research. Rev. Sci. Instrum., 81, 085102-1-085102-5(2010).

    [40] A. L. D. Skury, S. N. Monteiro, M. G. de Azevedo, G. S. Bobrovnitchii. Cubic boron nitride competing with diamond as a superhard engineering materials—An overview. J. Mater. Res. Technol., 2, 68-74(2013).

    [41] H. Sumiya. Novel development of high-pressure synthetic diamonds “ultra-hard nano-polycrystalline diamonds”. SEI Technol. Rev., 74, 15-22(2012).

    [42] W. J. Evans, C.-S. Yoo, G. W. Lee. Crystallization of water in a dynamic diamond-anvil cell: Evidence for ice VII-like local order in supercompressed water. Phys. Rev. B, 74, 134112-1-134112-6(2006).

    [43] W. J. Evans, C. S. Yoo, G. W. Lee. Dynamic pressure-induced dendrite and shock crystal growth of ice VI. Proc. Natl. Acad. Sci. U. S. A., 104, 9178-9181(2007).

    [44] M. J. Lipp, W. J. Evans, C. S. Yoo, H. Cynn, G. W. Lee, K. Visbeck. Dynamic diamond anvil cell (d-DAC): A novel device for studying the dynamic-pressure properties of materials. Rev. Sci. Instrum., 78, 073904-1-073904-6(2007).

    [45] C. S. Yoo, J.-Y. Chen. Formation and phase transitions of methane hydrates under dynamic loadings: Compression rate dependent kinetics. J. Chem. Phys., 136, 114513-1-114513-10(2012).

    [46] W. J. Evans, M. Kim, C.-S. Yoo, H. Cynn, J.-Y. Chen, Z. Jenei, H.-P. Liermann. Solidification and fcc- to metastable hcp- phase transition in krypton under variable compression rates. Phys. Rev. B, 90, 144104-1-144104-8(2014).

    [47] J. Y. Chen, C. S. Yoo. High density amorphous ice at room temperature. Proc. Natl. Acad. Sci. U. S. A., 108, 7685-7688(2011).

    [48] C. S. Yoo, D. Tomasino. Solidification and crystal growth of highly compressed hydrogen and deuterium: Time-resolved study under ramp compression in dynamic-diamond anvil cell. Appl. Phys. Lett., 103, 061905-1-061905-4(2013).

    [49] Y.-H. Lee, S. Lee, Y.-J. Kim, H. Nada, G. W. Lee. Shock growth of ice crytal near equilibrium melting pressure under dynamic compression. Proc. Natl. Acad. Sci. U. S. A., 116, 8679-8684(2019).

    [50] M. G. Newman, F. Coppari, R. J. Rygg, R. G. Kraus, J. H. Eggert, J. K. Wicks, R. F. Smith, D. E. Fratanduono, T. S. Duffy. Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions. Sci. Adv., 4, eaao5865-1-eaao5865-10(2018).

    [51] J. H. Eggert, R. F. Smith, L. X. Benedict, J. Wang, A. E. Lazicji, J. Blener, A. V. Hamza, R. E. Rudd, J. R. Patterson, G. W. Collins, D. G. Braun, T. S. Duffy, R. Jeanloz, T. Braun, P. M. Celliers. Ramp compression of diamond to five terapascals. Nature, 511, 330-333(2014).

    [52] J. R. Rygg, J. H. Eggert, R. J. Hemley, A. F. Goncharov, N. B. Meezan, D. E. Fratanduono, P. M. Celliers, R. S. McWilliams, S. Le Pape, G. W. Collins, R. Jeanloz, J. L. Peterson, P. Loubeyre, M. Millot, S. Brygoo. Insulator-metal transition in dense fluid deuterium. Science, 361, 677-682(2018).

    [53] G. Collins, S. H. Glenzer, J. Hammer, D. Swift, T. Doppner, S. Rothman, J. Hawreliak, D. Kraus, D. Chapman, R. W. Falcone, O. L. Landen, P. Neumayer, O. Jones, D. Strozzi, C. Keane, H. J. Lee, E. Dewald, J. Nilsen, A. L. Kritcher, C. Thomas, S. Felker, B. Bachmann. Probing matter at Gbar pressures at the NIF. High Energy Density Phys., 10, 27-34(2014).

    [54] Y. M. Gupta, S. J. Turneaure, J. M. Winey, S. M. Sharma, T. J. Volz. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds. Sci. Adv., 3, eaao3561-1-eaao3561-6(2017).

    [55] M. P. Desjarlais, R. Redmer, M. E. Savage, A. Becker, T. M. Mattsson, M. D. Knudsen, K. R. Cochrane, R. W. Lemke, D. E. Bliss. Direct observation of an abrupt insulator to metal transition in dense liquid deuterium. Science, 348, 1455-1460(2015).

    [56] S. T. Weir, A. C. Mitchell, W. J. Nellis. Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar). Phys. Rev. Lett., 76, 1860-1864(1996).

    [57] Y. Li, N. Sinclair, S. M. Sharma, J. Zhang, A. Schuman, S. J. Turneaure, P. Rigg, X. Wang, N. Weir, J. M. Winey, T. Toyoda. Structural transformation and melting in gold shock compressed to 355 GPa. Phys. Rev. Lett., 123, 045702-1-045702-4(2019).

    [58] M. Bagge-Hansen, T. M. Wiley, D. M. Dattelbaum, E. B. Watkins, B. J. Jensen, C. M. May, A. W. van Buuren, T. Gog, S. Seifert, C. E. Johnson, N. Sinclair, T. J. Graber, K. A. Velizhanin, R. C. Huber, D. W. Hansen, R. L. Hodgin, M. A. Firestone, D. W. Podlesak, L. M. Lauderbach, B. S. Ringstrand, A. C. Jones, J. T. Mang. Time resolved small angle x-ray scattering experiments performed on detonating explosives at the advanced photon source: Calculation of the time and distance between the detonation front and the x-ray beam. J. Appl. Phys., 121, 105902-1-105902-10(2017).

    [59] B. A. Remington, M. Suggit, A. Higginbotham, H. J. Lee, F. Tavella, D. Swift, H. S. Park, C. Bolme, J. S. Wark, L. Zepeda-Ruis, M. Sliwa, A. Lazicki, B. Nagler, R. E. Rudd, C. E. Wahrenberg, D. McGonegle. In-situ x-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics. Nature, 550, 496-499(2017).

    [60] P. Neumayer, E. Galtier, J. Vorberger, L. B. Fletcher, E. Granados, D. O. Gericke, E. J. Gamboa, S. Frydrych, M. J. MacDonald, R. W. Falcone, D. Kraus, P. Sun, E. E. McBride, S. H. Glenzer, N. J. Hartley, T. Doppner, I. Nam, M. Roth, A. J. Mackinnon, A. K. Schuster, T. van Driel, A. M. Saunders, A. Pak. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. Nat. Astron., 1, 606-611(2017).

    [61] W. J. Nellis, D. J. Erskine. Shock-induced martensitic transformation of highly oriented graphite to diamond. J. Appl. Phys., 71, 4882-4886(1992).

    [62] Y. M. Gupta, D. H. Dolan. Nanosecond freezing of water under multiple shock wave compression: Optical transmission and imaging measurements. J. Chem. Phys., 8, 9050-9057(2004).

    [63] O. Tschauner, P. D. Asimow, T. J. Ahrens, S.-N. Luo. Recovery of stishovite-structure at ambient conditions out of shock-generated amorphous silica. Am. Mineral., 91, 1857-1862(2006).

    [64] D. M. Dattelbaum, A. J. Davidson, C.-S. Yoo, R. P. Dias. “Stubborn” triamiotrinitobenzene: Unusually high chemical stability of a molecular solid to 150 GPa. J. Chem. Phys., 135, 174507-1-174507-5(2011).

    [65] S. F. Agnew, G. E. Duvall, J. J. Furrer, C.-S. Yoo, B. I. Swanson. Effects of dilution on the ultraviolet and visible absorptivity of CS2 under static and shock compression. J. Phys. Chem., 91, 6577-6578(1987).

    [66] C. S. Yoo, Y. M. Gupta. Time-resolved absorption changes of thin CS2 samples under shock compression: Electronic and chemical implications. J. Phys. Chem., 94, 2857-2865(1990).

    [67] J. P. Ritchie, J. J. Dick. Molecular mechanics modeling of shear and the crystal orientation dependence of the elastic precursor shock strength in pentaerythritol tetranitrate. J. Appl. Phys., 76, 2726(1994).

    [68] J. Aidun, M. S. T. Bukowinski, M. Ross. Equation of state and metallization of CsI. Phys. Rev. B, 29, 2611-2621(1984).

    [69] R. J. Hemley, H. K. Mao, J. F. Shu, L. W. Finger, L. C. Chen, Y. Wu. X-ray diffraction to 302 gigapascals: High pressure crystal structure of cesium iodide. Science, 246, 649-651(1989).

    [70] I. F. Silvera, K. A. Goettel, J. H. Eggert. Optical evidence for the metallization of xenon at 132(5) GPa. Phys. Rev. Lett., 62, 665-668(1989).

    [71] R. Reichlin, M. Ross, S. Martin, A. K. McMahan, Y. K. Vohra, K. E. Brister, A. L. Ruoff. Evidence for the insulator-metal transition in xenon from optical, x-ray, and band-structure studies to 170 GPa. Phys. Rev. Lett., 62, 669-672(1989).

    [72] H. K. Mao, L. W. Finger, R. J. Hemley, J. F. Shu, D. E. Cox, L. C. Chen, Y. Wu. High-pressure phase transition and equation of state of CsI. Phys. Rev. Lett., 64, 1749-1752(1990).

    [73] K. Shimizu, T. C. Kobayashi, K. Amaya, M. I. Eremets. Metallic CsI at pressures of up to 220 gigapascals. Science, 281, 1333-1335(1998).

    [74] J. S. Tse, Y. Ma, T. Cui, H. Wang, G. Zou, A. R. Oganov, Y. Xu. Superconducting high-pressure phase of cesium iodide. Phys. Rev. B, 79, 144110-1-144110-5(2009).

    [75] W. Utsumi, T. Yagi, O. Shimomura, T. Kikegawa, M.-A. Yamakata. High-pressure in-situ x-ray diffraction study of the phase transformation from graphite to hexagonal diamond at room temperature. Phys. Rev. B, 46, 6031-6039(1992).

    [76] A. F. Goncharov, I. N. Makarenko, S. M. Stishov. Graphite at pressure up to 55 GPa: Optical properties and Raman scattering-amorphous carbon?. Sov. Phys. JETP, 69, 380-381(1989).

    [77] A. Sengupta, C.-S. Yoo, M. Kim. Carbon dioxide carbonates in the Earth’s mantle: Implications to the deep carbon cycle. Angew. Chem., Int. Ed., 50, 11415-11418(2011).

    [78] M. F. Nicol, C. S. Yoo. Kinetics of a pressure-induced polymerization reaction of cyanogen. J. Phys. Chem., 90, 6732-6736(1986).

    [79] H. Cynn, M. F. Nicol, K. Aoki, B. J. Baer. High pressure Raman study of one-dimensional crystals of the very polar molecular hydrogen cyanide. Phys. Rev. B, 42, 4298-4303(1990).

    [80] K. Mimura, T. Nishida, A. Shinozaki. Decomposition and oligomerization of 2,3-naphthyridine under high-pressure and high-temperature conditions. Sci. Rep., 9, 7335-1-7335-9(2019).

    [81] N. W. Ashcroft, J. Feng, W. Crochala, R. Hoffmann. The chemical imagination at work in very tight places. Angew. Chem., Int. Ed., 46, 3620-3642(2007).

    [82] G. Wilkinson, F. A. Cotton. Advanced Inorganic Chemistry(1988).

    [83] T. Yagi, W. Utsumi. Light-transparent phase formed by room-temperature compression of graphite. Science, 252, 1542-1544(1991).

    [84] D. L. Heinz, P. J. Eng, T. P. Trainor, C.-C. Kao, H.-K. Mao, R. J. Hemley, Y. Meng, J. Shu, W. L. Mao, M. Newwille. Bonding changes in compressed superhard graphite. Science, 302, 425-427(2003).

    [85] Z. Zeng, W. Yang, J. Wen, W. L. Mao, D. J. Miller, Q. Zeng, H. Sheng, H. Lou, L. Yang, Y. Meng, H.-K. Mao. Synthesis of quenchable amorphous diamond. Nat. Commun., 18, 322-1-322-7(2017).

    [86] H. K. Mao, I. A. Trojan, R. Boehler, M. I. Eremets, R. J. Hemley, A. G. Gavriliuk, D. A. Dzivenko, N. R. Serebryanaya. Structural transformation of molecular nitrogen to a single-bonded atomic state at high pressures. J. Chem. Phys., 121, 11296-11300(2004).

    [87] F. P. Bundy. Direct conversion of graphite to diamond in static pressure apparatus. J. Chem. Phys., 38, 631-643(1963).

    [88] W. E. Streib, W. N. Lipscomb, T. H. Jordan. Singe-crystal x-ray diffraction study of β nitrogen. J. Chem. Phys., 37, 2962-2965(1962).

    [89] J. S. Tse, R. Dias, H. Liu, X. Yong, M. Wi, C. S. Yoo, Y. Yao. Crystal structures and dynamical properties of dense CO2. Proc. Natl. Acad. Sci. U. S. A., 113, 11110-11115(2016).

    [90] A. Sengupta, C. S. Yoo, M. Kim. Polymerization of carbon dioxide: A chemistry view of molecular-to-nonmolecular phase transitions. J. Phys. Chem. C, 116, 2061-2067(2012).

    [91] C. S. Yoo, T. Matsuoka, V. V. Struzhkin, T. Muramatsu, M. Kim, R. P. Dias, S. Sinogelkin, Y. Ohishi. Superconductivity in highly disordered dense carbon disulfide. Proc. Natl. Acad. Sci. U. S. A., 110, 11720-11724(2013).

    [92] R. P. Dias, C. S. Yoo, M. Kim, J. S. Tse. Insulator-metal transition of highly compressed carbon disulfide. Phys. Rev. B, 84, 144104-1-144104-6(2011).

    [93] B. J. Baer, C. S. Yoo, M. J. Lipp, W. J. Evans. High-energy-density extended CO solid. Nat. Mater., 4, 211-215(2005).

    [94] M. L. Cohen. Calculation of bulk moduli of diamond and zinc-blende solids. Phys. Rev. B, 32, 7988-7991(1985).

    [95] A. Y. Liu, M. L. Cohen. Prediction of new low compressibility solids. Science, 245, 841-842(1989).

    [96] W. L. McMillan. Transition temperature of strong-coupled superconductors. Phys. Rev., 167, 331-344(1968).

    [97] L. A. Schwalbe, D. Schiferl, D. T. Cromer, R. L. Mills. The structure of N2 at 49 kbar and 299 K. Acta Crystallogr. B, 37, 8-11(1981).

    [98] R. L. Mills, S. Buchsbaum, D. Schiferl. Phase transitions in nitrogen observed by Raman spectroscopy from 0.4 to 27.4 GPa at 15 K. J. Phys. Chem., 89, 2324-2330(1985).

    [99] G. Shen, M. Somayazulu, R. J. Hemley, H.-K. Mao, A. F. Goncharov, E. Gregoryanz. Raman, infrared, and x-ray evidence for new phases of nitrogen at high pressures and temperatures. Phys. Rev. B, 66, 224108-1-224108-5(2002).

    [100] R. J. Hemley, H.-K. Mao, E. Gregoryanz, A. F. Goncharov. High-pressure amorphous nitrogen. Phys. Rev. B, 64, 052103-1-052103-4(2001).

    [101] C. J. Pickard, , R. J. Needs. High-pressure phases of nitrogen. Phys. Rev. Lett., 102, 125702-1-125702-4(2009).

    [102] W. Evans, D. Tomasino, Z. Jenei, C.-S. Yoo. Melting and phase transitions of nitrogen under high pressures and temperatures. J. Chem. Phys., 140, 244510-1-244510-8(2014).

    [103] M. Kim, D. Tomasino, C. S. Yoo, J. Smith. Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity. Phys. Rev. Lett., 113, 205502-1-205502-4(2014).

    [104] Y. Xie, Z. Li, Y. Ma, J. Kotakoski, A. R. Oganov. Novel high pressure structure of polymeric nitrogen. Phys. Rev. Lett., 102, 065501-1-065501-4(2009).

    [105] B. Chen, H. He, B. Li, Y. Cui, W. Zhou, G. Qjan. Metal-organic frameworks as platforms for functional materials. Acc. Chem. Res., 49, 483-493(2016).

    [106] G. Weck, D. Laniel, G. Geneste, M. Mezouar, P. Loubeyre. Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa. Phys. Rev. Lett., 122, 066001-1-066001-5(2019).

    [107] Y. C. Wang, L. Chen, M. S. Miao, Y. M. Ma, C. J. Pickard, J. F. Li, T. Cui, X. L. Wang, X. Zhong, J. Lv. Cagelike diamondoid nitrogen at high pressures. Phys. Rev. Lett., 109, 175502-1-175502-4(2012).

    [108] Y.-J. Ryu, R. Dias, C.-S. Yoo, M. Kim, D. Klug, J. Lim. Dense carbon monoxide to 160 GPa: Stepwise polymerization to two-dimensional layered solid. J. Phys. Chem. C, 120, 27548-27554(2016).

    [109] A. I. Katz, R. L. Mills, D. Schiferl. New phases and chemical reactions in solid carbon monoxide under pressure. J. Phys. Chem., 88, 3176-3179(1984).

    [110] M. Ceppatelli, R. Bini, A. Serdyukov, H. Jodl. Pressure induced reactivity of solid CO by FTRI studies. J. Phys. Chem. B, 113, 6652-6660(2009).

    [111] H. Cynn, W. J. Evans, J. L. Herberg, C. S. Yoo, M. J. Lipp, R. S. Maxwell. Pressure-induced polymerization of carbon monoxide: Disproportionation and synthesis of an energetic lactonic polymer. Chem. Mater., 18, 2520-2531(2006).

    [112] M. Ceppatelli, M. Pagliali, R. Bini, H. J. Jodl. High-pressure photoinduced synthesis of polynitrogen in δ and ε-nitrogen crystals substitutionally doped with CO. J. Phys. Chem. C, 119, 130-140(2015).

    [113] D. D. Klug, C. J. Pickard, R. J. Needs, J. Sun. Controlling the bonding and bond gaps of solid carbon monoxide with pressure. Phys. Rev. Lett., 106, 145502-1-145502-4(2011).

    [114] S. Bernard, G. L. Chiarotti, S. Scandolo, A. Tosatti. Decomposition and polymerization of solid carbon monoxide under pressure. Phys. Rev. Lett., 81, 2092-2095(1998).

    [115] D. D. Klug, J. Sun, K. Xia, C. J. Pickard, R. J. Needs. Phys. Rev. B, 95, 144102-1-144102-4(2017).

    [116] N. W. Ashcroft, R. Hoffmann, A. Hermann. High pressure ices. Proc. Natl. Acad. Sci. U. S. A., 109, 745-750(2012).

    [117] H. Wang, J. Lv, L. Zhu, Y. Ma, Y. Wang, H. Liu. High pressure partially ionic phase of water ice. Nat. Commun., 2, 563-1-563-5(2011).

    [118] M. L. Klein, P. Demontis, R. LeSar. New high-pressure phases of ice. Phys. Rev. Lett., 60, 2284-2287(1988).

    [119] J. S. Weaver, T. Takehashi, W. A. Bassett, H.-K. Mao. Pressure-induced phase transformation in NaCl. J. Appl. Phys., 39, 319-325(1968).

    [120] N. Hirao, T. Sakai, Y. Ohishi, E. Ohtani. Equation of state of the NaCl-B2 phase up to 304 GPa. J. Appl. Phys., 109, 084912-1-084912-6(2011).

    [121] Y. Ma, X. Chen. High-pressure structures and metallization of sodium chloride. Eur. Phys. Lett., 100, 026005(2012).

    [122] W. Grochala. Atypical compounds of gases, which have been called ‘noble’. Chem. Soc. Rev., 36, 1632-1696(2007).

    [123] M. Debessai, C. S. Yoo, M. Kim. Two- and three-dimensional extended solids and metallization of compressed XeF2. Nat. Chem., 2, 784-788(2010).

    [124] V. B. Prakapenka, J. M. Zaug, E. Greenberg, A. F. Goncharov, S. S. Lobanov, E. Stavorou, Y. Yao, H. Liu. Synthesis of xenon and iron-nickel intermetallic compounds at Earth’s core thermodynamic conditions. Phys. Rev. Lett., 120, 096001-1-096001-4(2018).

    [125] A. F. Goncharov, M. F. Mahmood, S. S. Lobanov, S. Jiang, R. S. McWilliams, N. Holtgrewe, F. Su. Metallization and molecular dissociation of dense fluid nitrogen. Nat. Commun., 9, 2624-1-2624-6(2018).

    [126] S. A. Bonev, B. Boates. First-order liquid-liquid phase transition in compressed nitrogen. Phys. Rev. Lett., 102, 015701-1-015701-4(2009).

    [127] J. B. Kim, J. R. Peterson, S. H. Glenzer, E. E. McBride, J. S. Smith, P. Sun, M. Frost. High-pressure melt curve and phase diagram of lithium. Phys. Rev. Lett., 123, 065701-1-065701-4(2019).

    [128] D. L. Novikov, M. Hanfland, N. E. Christensen, K. Syassen. New high-pressure phases of lithium. Nature, 408, 174-178(2000).

    [129] Y. Ma, M. I. Eremets, A. R. Oganov, Y. Xie et al. Transparent dense sodium. Nature, 458, 182-185e(2009).

    [130] E. Tosatti, M. Parrinello, C. Cavazzoni, S. Scandolo, G. L. Chiarotti, M. Bernascono. Superionic and metallic states of water and ammonia at giant planet conditions. Science, 283, 44-46(1999).

    [131] F. Coppari, J. R. Rygg, D. C. Swift, J. H. Eggert, M. Millot, S. Hamel, B. A. Correa. Nanosecond x-ray diffraction of shock-compressed superionic water ice. Nature, 569, 251-255(2019).

    [132] D. A. Young. Phase Diagrams of the Elements(1991).

    [133] M. Mezouar, T. Le Bihan, C. S. Yoo, H. Cynn, M. F. Nicol, V. Iota, J.-H. Park. Disproportionation and other transformations of N2O at high pressures and temperatures to lower energy, denser phases. J. Phys. Chem. B, 107, 5922-5025(2003).

    [134] A. C. Mitchell, R. J. Trainor, D. J. Erskine, M. Ross, F. H. Ree, N. C. Holmes, W. J. Nellis. Equation of state of shock-compressed liquids: Carbon dioxide and air. J. Chem. Phys., 95, 5268-5272(1991).

    [135] S. A. Bonev, A. M. Teweldeberhan, B. Boates. Stability of dense liquid carbon dioxide. Proc. Natl. Acad. Sci. U. S. A., 109, 14808-14812(2012).

    [136] S. Scandolo. Liquid-liquid phase transition in compressed hydrogen from first-principles simulations. Proc. Natl. Acad. Sci. U. S. A., 100, 3051-0353(2003).

    [137] E. Schwegler, T. Ogitsu, S. A. Bonev, G. Galli. A quantum fluid of metallic hydrogen suggested by first-principles calculations. Nature, 431, 669-672(2004).

    [138] C. J. Pickard, H.-T. Wang, H. Gao, R. J. Needs, D. Xing, Y. Wang, J. Sun, C. Liu. Multiple superionic states in helium-water compounds. Nat. Phys., 15, 1065(2019).

    [139] D. D. Yan, E. Zurek, J. Botana, A. Hermann, H. Q. Lin, S. Valdez, M. S. Miao, Z. Liu. Reactivity of He with ionic compounds under high pressure. Nat. Commun., 9, 951-1-951-10(2018).

    [140] R. Redmer, B. Holst, W. Lorenzen. Demixing of hydrogen and helium at megabar pressures. Phys. Rev. Lett., 102, 115701-1-115701-4(2009).

    [141] G. M. Borstad, C. S. Yoo. H2O and D2 mixtures under pressure: Spectroscopy and proton exchange kinetics. J. Chem. Phys., 135, 174508-1-174508-11(2011).

    [142] G. M. Borstad, C.-S. Yoo. Hydrogen bonding induced proton exchange reactions in dense D2-NH3 and D2-CH4 mixtures. J. Chem. Phys., 140, 044510-1-044510-15(2014).

    [143] C.-S. Yoo, M. Kim. Highly repulsive interaction in novel inclusion D2-N2 compounds at high pressure: Raman and X-ray evidence. J. Chem. Phys., 134, 044519-1-044519-5(2011).

    [144] G. Weck, F. Daichi, M. Hanfland, P. Dumas, P. Loubeyre, D. K. Spaulding. Pressure-induced chemistry in a nitrogen-hydrogen host-guest structure. Nat. Commun., 5, 5739-1-5739-7(2014).

    [145] J. Lim, C.-S. Yoo. Intercalation of solid hydrogen into graphite under pressure. Appl. Phys. Lett., 109, 051905-1-051905-5(2016).

    [146] P. Liermann, M. Kim, W. Morgenroth, C. S. Yoo. Transformation and structure of silicatelike CO2-V. Phys. Rev. B, 87, 214103-1-214103-9(2013).

    [147] C.-S. Yoo, W. Evans, H. Cynn, J. Klepeis, I. Valentin, J. Zsolt. Nat. Mater., 6, 34-37(2007).

    [148] C.-S. Yoo, A. Sengupta. Coesite-like CO2: An analog to SiO2. Phys. Rev. B, 82, 012105-1-012105-4(2010).

    [149] J. Tse, C. S. Yoo, E. J. Kim, Y. J. Ryu, S. K. Lee, X. Yong, M. Kim. Hydrogen-doped polymeric carbon monoxide at high pressure. J. Phys. Chem. C, 121, 10078-10086(2017).

    [150] Y. J. Ryu, I. G. Batyrev, C.-S. Yoo, J. Lim, M. Kim. Copolymerization of CO and N2 to extended CON2 framework solid at high pressures. J. Phys. Chem. C, 122, 13054-13960(2018).

    [151] Y.-J. Ryu, C.-S. Yoo, K. Kim, N. H. Hur, S. Duwal, S. Bang, M. Kim. Transformation of hydrazinium azide to molecular N8 at 40 GPa. J. Chem. Phys., 148, 134310-1-134310-7(2018).

    [152] W. W. Wilson, J. A. Sheechy, J. A. Boatz, K. O. Christe. N5+: A novel homoleptic polynitrogen ion as a high energy density material. Angew. Chem., Int. Ed., 38, 2004-2009(2004).

    [153] J. C. Crowhurst, B. A. Steele, H. R. Radousky, A. C. Landrville, I. A. Oleynik, J. M. Zaug. Ammonium azide under high pressure: A combined theoretical and experimental study. J. Phys. Chem. A, 118, 8695-8700(2014).

    [154] H. Gao, J. M. Shreeve. Azole-based energetic salts. Chem. Rev., 111, 7377-7436(2011).

    [155] Z. Raza, A. Marco Saitta, C. J. Pickard, C. Pinilla. High energy density mixed polymeric phase from carbon monoxide and nitrogen. Phys. Rev. Lett., 111, 235501-1-235501-5(2013).

    [156] Y. Zhou, Q. Li, C. Zhu, S. Zhang, Q. Li, M. S. Zhang. Exploring high-pressure structure of N2CO. J. Phys. Chem. C, 118, 27252-27257(2014).

    [157] B. A. Steele, I. I. Oleynik. Ternary inorganic compounds containing carbon, nitrogen, and oxygen at high pressures. Inorg. Chem., 56, 13321-13328(2017).

    [158] J. A. Ciezak-Jenkins, I. I. Oleynik, G. M. Borstad, B. A. Steele. Structural and spectroscopic studies of nitrogen-carbon monoxide mixtures: Photochemical response and observation of a novel phase. J. Chem. Phys., 146, 184309-1-184309-9(2017).

    [159] M. Kim, C.-S. Yoo, Y. J. Ryu. Phase diagram and transformations of iron pentacarbonyl to nm layered hematite and carbon-oxygen polymer under pressure. Sci. Rep., 5, 15139-1-15139-8(2015).

    [160] G. K. Rozenberg, L. S. Dubrovinsky, O. Naaman, T. Le Bihan, R. Ahuja, M. P. Pasternak. High-pressure structural studies of hematite Fe2O3. Phys. Rev. B, 65, 064112-1-064112-8(2002).

    [161] Q. An, W. A. Goddard, B. Tang. Improved ductility of boron carbide by microalloying with boron suboxide. J. Phys. Chem. C, 119, 24649-24656(2015).

    [162] F. R. Kersey, D. M. Loveless, S. L. Craig. A hybrid polymer gel with controlled rates of cross-link rupture and self-repair. J. R. Soc. Interface, 4, 373-380(2007).

    [163] A. I. Benin, O. M. Yaghi, A. P. Cote, N. W. Ockwig, A. J. Matzger, M. O’Keefe. Porous, crystalline, covalent organic frameworks. Science, 310, 1166-1170(2005).

    [164] M. O’Keeffe, D. J. Tranchemontague, O. M. Yaghi, J. L. Mendoza-Cortes. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem. Soc. Rev., 38, 1257-1283(2009).

    Choong-Shik Yoo. Chemistry under extreme conditions: Pressure evolution of chemical bonding and structure in dense solids[J]. Matter and Radiation at Extremes, 2020, 5(1): 018202
    Download Citation