• Photonics Research
  • Vol. 5, Issue 5, 406 (2017)
Ziqi Li1, Chen Cheng1, Ningning Dong2, Carolina Romero3, Qingming Lu4, Jun Wang2, Javier Rodríguez Vázquez de Aldana3, Yang Tan1, and Feng Chen1、*
Author Affiliations
  • 1School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • 2Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 3Laser Microprocessing Group, Facultad Ciencias, Universidad de Salamanca, Salamanca 37008, Spain
  • 4School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
  • show less
    DOI: 10.1364/PRJ.5.000406 Cite this Article Set citation alerts
    Ziqi Li, Chen Cheng, Ningning Dong, Carolina Romero, Qingming Lu, Jun Wang, Javier Rodríguez Vázquez de Aldana, Yang Tan, Feng Chen. Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure[J]. Photonics Research, 2017, 5(5): 406 Copy Citation Text show less
    References

    [1] E. J. Murphy. Integrated Optical Circuits and Components(1999).

    [2] J. C. F. Matthews, A. Politi, A. Stefanov, J. L. O’Brien. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photonics, 3, 346-350(2009).

    [3] D. Kip. Photorefractive waveguides in oxide crystals: fabrication, properties, and applications. Appl. Phys. B, 67, 131-150(1998).

    [4] F. Chen. Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications. Laser Photon. Rev., 6, 622-640(2012).

    [5] F. Chen, J. R. Vázquez de Aldana. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photon. Rev., 8, 251-275(2014).

    [6] K. M. Davis, K. Miura, N. Sugimoto, K. Hirao. Writing waveguides in glass with a femtosecond laser. Opt. Lett., 21, 1729-1731(1996).

    [7] D. Choudhury, J. R. Macdonald, A. K. Kar. Ultrafast laser inscription: perspectives on future integrated applications. Laser Photon. Rev., 8, 827-846(2014).

    [8] B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B, 53, 1749-1761(1996).

    [9] S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, P. R. Herman. Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides. Opt. Express, 16, 9443-9458(2008).

    [10] J. Burghoff, H. Hartung, S. Nolte, A. Tünnermann. Structural properties of femtosecond laser-induced modifications in LiNbO3. Appl. Phys. A, 86, 165-170(2007).

    [11] G. Palmer, S. Gross, A. Fuerbach, D. G. Lancaster, M. J. Withford. High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings. Opt. Express, 21, 17413-17420(2013).

    [12] T. Calmano, A. G. Paschke, S. Müller, C. Kränkel, G. Huber. Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription. Opt. Express, 21, 25501-25508(2013).

    [13] R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. P. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, A. K. Kar. 1.5  GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler. Opt. Express, 21, 7943-7950(2013).

    [14] C. Grivas. Optically pumped planar waveguide lasers, Part I: fundamentals and fabrication techniques. Prog. Quantum Electron., 35, 159-239(2011).

    [15] H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, J. Wang. Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer. Laser Photon. Rev., 8, 847-864(2014).

    [16] A. K. Geim, K. S. Novoselov. The rise of graphene. Nat. Mater., 6, 183-191(2007).

    [17] J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. McCoubrey, Y. Zhang, S. Li, H. Zhang, Q. Bao. Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology, 27, 462001(2016).

    [18] W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, L. Mei. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater., 29, 1603276(2017).

    [19] F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam. Two-dimensional material nanophotonics. Nat. Photonics, 8, 899-907(2014).

    [20] Y. Tan, H. Zhang, C. Zhao, S. Akhmadaliev, S. Zhou, F. Chen. Bi2Se3Q-switched Nd: YAG ceramic waveguide laser. Opt. Lett., 40, 637-640(2015).

    [21] C. Cheng, H. Liu, Y. Tan, J. R. Vázquez de Aldana, F. Chen. Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide. Opt. Express, 24, 10385-10390(2016).

    [22] C. Cheng, H. Liu, Z. Shang, W. Nie, Y. Tan, B. R. Rabes, J. R. Vázquez de Aldana, D. Jaque, F. Chen. Femtosecond laser written waveguides with MoS2 as saturable absorber for passively Q-switched lasing. Opt. Mater. Express, 6, 367-373(2016).

    [23] Q. Bao, K. P. Loh. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 6, 3677-3694(2012).

    [24] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 7, 699-712(2012).

    [25] R. He, J. R. Vázquez de Aldana, F. Chen. Passively Q-switched Nd: YVO4 waveguide laser using graphene as a saturable absorber. Opt. Mater., 46, 414-417(2015).

    [26] Y. Tan, Z. Guo, L. Ma, H. Zhang, S. Akhmadaliev, S. Zhou, F. Chen. Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous. Opt. Express, 24, 2858-2866(2016).

    [27] J. Liu, S. Wu, Q. Yang, P. Wang. Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser. Opt. Lett., 36, 4008-4010(2011).

    [28] J. Lin, Y. Hu, C. Chen, C. Gu, L. Xu. Wavelength-tunable Yb-doped passively Q-switching fiber laser based on WS2 saturable absorber. Opt. Express, 23, 29059-29064(2015).

    [29] Z. Li, F. Chen. Ion beam modification of two-dimensional materials: characterization, properties, and applications. Appl. Phys. Rev., 4, 011103(2017).

    [30] Y. Tan, X. Liu, Z. He, Y. Liu, M. Zhao, H. Zhang, F. Chen. Tuning of interlayer coupling in large-area graphene/WSe2 van der Waals heterostructure via ion irradiation: optical evidences and photonic applications. ACS Photon., 4, 1531-1538(2017).

    [31] C. R. Ryder, J. D. Wood, S. A. Wells, M. C. Hersam. Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus. ACS Nano, 10, 3900-3917(2016).

    [32] L. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, F. Chen. Tailoring the optical properties of atomically-thin WS2 via ion irradiation. Nanoscale(2017).

    [33] K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. C. Neto. 2D materials and van der Waals heterostructures. Science, 353, aac9439(2016).

    [34] Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, B. Huang. Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Phys. Chem. Chem. Phys., 13, 15546-15553(2011).

    [35] T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, A. Mishchenko. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol., 8, 100-103(2013).

    [36] J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, H. Zhao. Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures. Nat. Commun., 5, 5622(2014).

    [37] E. C. T. O’Farrell, A. Avsar, J. Y. Tan, G. Eda, B. Özyilmaz. Quantum transport detected by strong proximity interaction at a graphene-WS2 van der Waals interface. Nano Lett., 15, 5682-5688(2015).

    [38] S. Omar, B. J. van Wees. Graphene-WS2 heterostructures for tunable spin injection and spin transport. Phys. Rev. B, 95, 081404(2017).

    [39] H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, Q. Bao. Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation. ACS Photon., 2, 832-841(2015).

    [40] Z. Wang, H. Mu, J. Yuan, C. J. Zhao, Q. Bao, H. Zhang. Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers. IEEE J. Sel. Top. Quantum Electron., 23, 195-199(2017).

    [41] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett., 97, 187401(2006).

    [42] A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C.-I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J.-C. Charlier, H. Terrones, M. Terrones. Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep., 3, 1755(2013).

    [43] S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, J. Wang. Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films. ACS Nano, 9, 7142-7150(2015).

    [44] M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron., 26, 760-769(1990).

    [45] X. Zhang, A. Selkirk, S. Zhang, J. Huang, Y. Li, Y. Xie, N. Dong, Y. Cui, L. Zhang, W. J. Blau, J. Wang. MoS2/carbon nanotube core-shell nanocomposites for enhanced nonlinear optical performance. Chemistry, 23, 3223(2016).

    CLP Journals

    [1] Ziqi Li, Rang Li, Chi Pang, Yuxia Zhang, Haohai Yu, Feng Chen. WSe2 as a saturable absorber for multi-gigahertz Q-switched mode-locked waveguide lasers [Invited][J]. Chinese Optics Letters, 2019, 17(2): 020013

    [2] Lingqi Li, Weijin Kong, Feng Chen. Femtosecond laser-inscribed optical waveguides in dielectric crystals: a concise review and recent advances[J]. Advanced Photonics, 2022, 4(2): 024002

    [3] Hui Long, Jian-Wei Hu, Fu-Gen Wu, Hua-Feng Dong. Ultrafast pulse lasers based on two-dimensional nanomaterial heterostructures as saturable absorber[J]. Acta Physica Sinica, 2020, 69(18): 188102-1

    [4] Yuechen Jia, Feng Chen. Compact solid-state waveguide lasers operating in the pulsed regime: a review [Invited][J]. Chinese Optics Letters, 2019, 17(1): 012302

    [5] Bo Guo. 2D noncarbon materials-based nonlinear optical devices for ultrafast photonics [Invited][J]. Chinese Optics Letters, 2018, 16(2): 020004

    [6] Bing Bai, Yang Bai, Diao Li, Yanxiao Sun, Jianlin Li, Jintao Bai. Double Q-switched 946 nm laser with MgO:LN electro-optic crystal and MoSe2 saturable absorber[J]. Chinese Optics Letters, 2018, 16(3): 031402

    Ziqi Li, Chen Cheng, Ningning Dong, Carolina Romero, Qingming Lu, Jun Wang, Javier Rodríguez Vázquez de Aldana, Yang Tan, Feng Chen. Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure[J]. Photonics Research, 2017, 5(5): 406
    Download Citation