• Chinese Optics Letters
  • Vol. 22, Issue 12, 120002 (2024)
Haitao Luan1,2, Long Chen1,2, Yibo Dong1,2,*, Min Gu1,2,**, and Qiming Zhang1,2,***
Author Affiliations
  • 1School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3788/COL202422.120002 Cite this Article Set citation alerts
    Haitao Luan, Long Chen, Yibo Dong, Min Gu, Qiming Zhang, "Compact high-robustness diffractive neural network chip for water-immersed optical inference," Chin. Opt. Lett. 22, 120002 (2024) Copy Citation Text show less
    References

    [1] J. Aguzzi, S. Flögel, S. Marini et al. Developing technological synergies between deep-sea and space research. Elem. Sci. Anth., 10, 00064(2022).

    [2] A. Witze. Diving deep: the centuries-long quest to explore the deepest ocean. Nature, 616, 653(2023).

    [3] S. Zhu, T. Yu, T. Xu et al. Intelligent computing: the latest advances, challenges, and future. Intell. Comput., 2, 0006(2023).

    [4] F. Hanson, S. Radic. High bandwidth underwater optical communication. Appl. Opt., 47, 277(2008).

    [5] X. Yi, Z. Li, Z. Liu. Underwater optical communication performance for laser beam propagation through weak oceanic turbulence. Appl. Opt., 54, 1273(2015).

    [6] G. Wetzstein, A. Ozcan, S. Gigan et al. Inference in artificial intelligence with deep optics and photonics. Nature, 588, 39(2020).

    [7] Q. Zhang, H. Yu, M. Barbiero et al. Artificial neural networks enabled by nanophotonics. Light Sci. Appl., 8, 42(2019).

    [8] B. J. Frey, D. B. Leviton, T. J. Madison. Temperature-dependent refractive index of silicon and germanium. Optomechanical Technologies for Astronomy, 790(2006).

    [9] D. A. Neamen. Semiconductor Physics and Devices: Basic Principles(2003).

    [10] X. Lin, Y. Rivenson, N. T. Yardimci et al. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004(2018).

    [11] M. Gu, Y. Dong, H. Yu et al. Perspective on 3D vertically-integrated photonic neural networks based on VCSEL arrays. Nanophotonics, 12, 827(2023).

    [12] B. Bai, Y. Li, Y. Luo et al. All-optical image classification through unknown random diffusers using a single-pixel diffractive network. Light Sci. Appl., 12, 69(2023).

    [13] B. B. Traore, B. Kamsu-Foguem, F. Tangara. Deep convolution neural network for image recognition. Ecol. Inform., 48, 257(2018).

    [14] Y. Dong, D. Lin, L. Chen et al. Compact eternal diffractive neural network chip for extreme environments. Comms. Eng., 3, 64(2024).

    [15] C. Qian, X. Lin, X. Lin et al. Performing optical logic operations by a diffractive neural network. Light Sci. Appl., 9, 59(2020).

    [16] G. Barbastathis, A. Ozcan, G. Situ. On the use of deep learning for computational imaging. Optica, 6, 921(2019).

    [17] A. Ozcan, Y. Rivenson, Y. Wu et al. Method and system for phase recovery and holographic image reconstruction using a neural network(2022).

    [18] Y. Luo, Y. Zhao, J. Li et al. Computational imaging without a computer: seeing through random diffusers at the speed of light. eLight, 2, 4(2022).

    [19] J. Zhou, H. Pu, J. Yan. Spatiotemporal diffractive deep neural networks. Opt. Express, 32, 1864(2024).

    [20] X. Luo, Y. Hu, X. Ou et al. Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible. Light Sci. Appl., 11, 158(2022).

    [21] E. Goi, M. Gu. Perspective on photonic neuromorphic computing. Neuromorphic Photonic Devices and Applications, 353(2024).

    [22] E. Goi, S. Schoenhardt, M. Gu. Direct retrieval of Zernike-based pupil functions using integrated diffractive deep neural networks. Nat. Commun., 13, 7531(2022).

    [23] H. Chen, J. Feng, M. Jiang et al. Diffractive deep neural networks at visible wavelengths. Engineering, 7, 1483(2021).

    [24] Z. Duan, H. Chen, X. Lin. Optical multi-task learning using multi-wavelength diffractive deep neural networks. Nanophotonics, 12, 893(2023).

    [25] Y. Gao, S. Jiao, J. Fang et al. Multiple-image encryption and hiding with an optical diffractive neural network. Opt. Commun., 463, 125476(2020).

    [26] Z. Huang, P. Wang, J. Liu et al. All-optical signal processing of vortex beams with diffractive deep neural networks. Phys. Rev. Appl., 15, 014037(2021).

    [27] P. Wang, W. Xiong, Z. Huang et al. Diffractive deep neural network for optical orbital angular momentum multiplexing and demultiplexing. IEEE J. Sel. Top. Quantum Electron., 28, 7500111(2021).

    [28] Y.-L. Xiao, S. Li, G. Situ et al. Unitary learning for diffractive deep neural network. Opt. Lasers Eng., 139, 106499(2021).

    [29] X. Sui, Q. Wu, J. Liu et al. A review of optical neural networks. IEEE Access, 8, 70773(2020).

    [30] X. Fang, X. Hu, B. Li et al. Orbital angular momentum-mediated machine learning for high-accuracy mode-feature encoding. Light Sci. Appl., 13, 49(2024).

    [31] Y. LeCun, L. Bottou, Y. Bengio et al. Gradient-based learning applied to document recognition. Proc. IEEE, 86, 2278(1998).

    [32] H. Xiao, K. Rasul, R. Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms(2017).

    [33] Y. Dong, H. Luan, D. Lin et al. Laser-induced graphene hologram reconfiguration for countersurveillance multisecret sharing. Laser Photonics Rev., 17, 2200805(2023).

    [34] A. Nayl, A. Abd-Elhamid, A. A. Aly et al. Recent progress in the applications of silica-based nanoparticles. RSC Adv., 12, 13706(2022).

    [35] K. Iizuka, K. Iizuka. Engineering Optics, 35(2008).

    Haitao Luan, Long Chen, Yibo Dong, Min Gu, Qiming Zhang, "Compact high-robustness diffractive neural network chip for water-immersed optical inference," Chin. Opt. Lett. 22, 120002 (2024)
    Download Citation