• Matter and Radiation at Extremes
  • Vol. 1, Issue 2, 89 (2016)
S. Kawata1、*, T. Karino1、2, and A.I. Ogoyski3
Author Affiliations
  • 1Graduate School of Engineering, Utsunomiya University, Yohtoh 7-1-2, Utsunomiya, 321-8585, Japan
  • 2CORE (Center for Optical Research and Education), Utsunomiya University, Yohtoh 7-1-2, Utsunomiya, 321-8585, Japan
  • 3Department of Physics, Technical University of Varna, Ulitska, Studentska 1, Varna, Bulgaria
  • show less
    DOI: 10.1016/j.mre.2016.03.003 Cite this Article
    S. Kawata, T. Karino, A.I. Ogoyski. Review of heavy-ion inertial fusion physics[J]. Matter and Radiation at Extremes, 2016, 1(2): 89 Copy Citation Text show less
    References

    [1] M.J. Clauser, Ion-beam implosion of fusion targets, Phys. Rev. Lett. 35 (1975) 848-851.

    [2] D. B€ohne, I. Hofmann, G. Kessler, G.L. Kulcinski, J. Meyer-ter-Vehn, et al., HIBALL e a conceptual design study of a heavy-ion driven inertial confinement fusion power plant, Nucl. Eng. Des. 73 (2) (1982) 195-200.

    [3] T. Yamaki, et al., HIBLIC-1, Conceptual Design of a Heavy Ion Fusion Reactor, Research Information Center, Institute for Plasma Physics, Nagoya University, Report IPPJ-663, 1985.

    [4] R.W. Moir, R.L. Bieri, X.M. Chen, T.J. Dolan, M.A. Hoffman, et al., HYLIFE-II: a Molten salt inertial fusion energy power plant design-final report, Fusion Technol. 25 (1994) 5-25; Hofmann, I., Plass, G., HIDIF Study, Report of the European Study Group on Heavy Ion Driven Inertial Fusion, GSI Report GSI-98-06, 1998.

    [5] J. F. Ziegler, J. P. Biersack, U. Littmark, In The Stopping and Range of Ions in matter, volume 1, (Pergamon, New York, 1985).

    [6] T.A. Mehlhorn, A finite material temperature model for ion energy deposition in ion-driven inertial confinement fusion targets, J. Appl. Phys. 52 (1981) 6522-6532.

    [7] D.A. Callahan-Miller, M. Tabak, A distributed radiator, heavy ion target driven by gaussian beams in a multibeam illumination geometry, Nucl. Fusion 39 (1999) 883-892.

    [8] R.C. Arnold, E. Colton, S. Fenster, M. Foss, G. Magelssen, et al., Utilization of high energy, small emittance accelerators for ICF target experiments, Nucl. Inst. Meth. 199 (1982) 557-561.

    [9] A.R. Piriz, A.R.N.A. Tahir, D.H.H. Hoffmann, M. Temporal, Generation of a hollow ion beam: calculation of the rotation frequency required to accommodate symmetry constraint, Phys. Rev. E 67 (017501) (2003) 1-3.

    [10] H. Qin, R.C. Davidson, B.G. Logan, Centroid and envelope dynamics of high-intensity charged-particle beams in an external focusing lattice and oscillating wobbler, Phys. Rev. Lett. 104 (2010) 254801.

    [11] S. Kawata, T. Sato, T. Teramoto, E. Bandoh, Y. Masubichi, et al., Radiation effect on pellet implosion and Rayleigh-Taylor instability in lightion beam inertial confinement fusion, Laser Part. Beams 11 (1993) 757-768.

    [12] S. Kawata, T. Sato, T. Teramoto, E. Bandoh, Y. Masubichi, et al., Dynamic mitigation of instabilities, Phys. Plasmas 19 (2012) 024503.

    [13] S. Kawata, T. Karino, Robust dynamic mitigation of instabilities, Phys. Plasmas 22 (2015) 042106.

    [14] S.E. Bodner, Rayleigh-Taylor instability and laser-pellet fusion, Phys. Rev. Lett. 33 (1974) 761-764.

    [15] H. Takabe, K. Mima, L. Montierth, R.L. Morse, Self-consistent growth rate of the Rayleigh-Taylor instability in an ablatively accelerating plasma, Phys. Fluids 28 (1985) 3676-3682.

    [16] Mark H. Emery, Joseph H. Orens, John H. Gardner, Jay P. Boris, Influence of nonuniform laser intensities on ablatively accelerated targets, Phys. Rev. Lett. 48 (1982) 253-256.

    [17] S. Kawata, K. Niu, Effect of nonuniform implosion of target on fusion parameters, J. Phys. Soc. Jpn. 53 (1984) 3416-3426.

    [18] S. Kawata, R. Sonobe, T. Someya, T. Kikuchi, Final beam transport in HIF, Nucl. Inst. Meth. Phys. Res. A 544 (2005) 98-103.

    [19] K. Miyazawa1, A.I. Ogoyski, S. Kawata, T. Someya, T. Kikuchi, Robust heavy ion beam illumination against a direct-drive-pellet displacement in inertial confinement fusion, Phys. Plasmas 12 (2005) 122702-122711-9.

    [20] A.I. Ogoyski, T. Someya, S. Kawata, Code OK1 e simulation of multibeam irradiation in heavy ion fusion, Comput. Phys. Commun. 157 (2004) 160-172; A.I. Ogoyski, S. Kawata, T. Someya, Code OK2 e a simulation code of ion-beam illumination on an arbitrary shape and structure target, Comput. Phys. Commun. 161 (2004) 143-150; A.I. Ogoyski, S. Kawata, P.H. Popov, Code OK3 e an upgraded version of OK2 with beam wobbling function, Comput. Phys. Commun. 181 (2010) 1332-1333.

    [21] S. kawata, Fuel target implosion in ion beam inertial confinement fusion, preprint, arXiv:1504.01831.

    [22] S. Atzeni, J. Meyer-ter-Vehn, The physics of inertial fusion: beam plasma interaction, hydrodynamics, hot dense matter, Int. Ser. Monogr. Phys. (2009).

    [23] S. Ichimaru, Statistical Plasma Physics, Westview Press, 2004.

    [24] O.A. Hurricane, D.A. Callahan, D.T. Casey, P.M. Celliers, Charles Cerjan, et al., Fuel gain exceeding unity in an inertially confined fusion implosion, Nature 506 (2014) 343-348.

    [25] H.S. Park, O. A Hurricane, D. A Callahan, D. Casey, E. L Dewald, et al., High-adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility, Phys. Rev. Lett. 112 (2014) 055001.

    [26] R.W. Petzoldt, IFE target injection and tracking experiment, Fusion Tech. 34 (1998) 831-839.

    [27] R.O. Bangerter, The U.S. heavy-ion fusion program, Nucl. Instr. Meth. A 415 (1998) 3-10.

    [28] J.J. Barnard, Richard M. More, M. Terry, A. Friedman, E. Henestroza, et al., NDCX-II target experiments and simulations, Nucl. Instrum. Methods Phys. Res. A 733 (2014) 45-50.

    [29] W.F. Henning, The future GSI facility, Nucl. Instr. Meth. B 214 (2004) 211-215; N.A. Tahira, A.R. Pirizb, G. Wouchukb, A. Shutovc, I.V. Lomonosovc, et al., Laboratory planetary science studies using intense heavy ion beams at FAIR: the HEDgeHOB collaboration, Nucl. Instr. Meth. A 606 (2009) 177-185.

    [30] J.C. Yang, J.W. Xia, G.Q. Xiao, H.S. Xu, H.W. Zhao, et al., High intensity heavy ion accelerator facility (HIAF) in China, Nucl. Instr. Meth. B 317 (15) (2013) 263-265.

    [31] Masahiro Okamura, A.I. Pikin, Vladimir Zajic, T. Kanesue, J. Tamura, Laser ion source for low-charge heavy ion beams, Nucl. Instr. Meth. A 606 (2009) 94-96.

    [32] K. Takayama, R.J. Briggs, et al., Induction Accelerators, Springer-Verlag, Berlin Heidelberg, 2011.

    [33] M. Matsukawa, K. Tobita, H. Chikaraishi, A. Sagara, T. Norimatsu, Electric power flow in a nucler fusion power plant, J. Plasma Fusion Res. 80 (2004) 559-562 (in Japanese).

    [34] R.B. Miller, Intense Charged Particle Beams, Plenum Press, New York, 1985.

    [35] S. Humphries Jr., Charged Particle Beams, John Wiley and Sons, Inc, 1990.

    [36] C. Deutsch, S. Kawata, T. Nakamura, Accelerator system and final beam transport in heavy ion inertial confinement fusion, J. Plasma Fusion Res. 77 (2001) 33-39.

    [37] D.A. Callahan, Interaction between neighboring beams in heavy ion fusion reactor chamber, Appl. Phys. Lett. 67 (1995) L3254-L3256.

    [38] D.A. Callahan, Chamber propagation physics for heavy ion fusion, Fusion Eng. Des. 32-33 (1996) 441-452.

    [39] Anna Tauschwitz, S.S. Yu, S. Eylon, R.O. Bangerter, Wim Leemans, et al., Plasma lens focusing and plasma channel transport for heavy ion fusion, Fusion Eng. Des. 32-33 (1996) 493-502.

    [40] W.M. Sharp, D.A. Callahan, M. Tabak, S.S. Yu, P.F. Peterson, Chamber transport of “foot” pulses for heavy-ion fusion, Phys. Plasmas 10 (2003) 2457-2467.

    [41] P.K. Roy, S.S. Yu, S. Eylon, E. Henestroza, Andre Anders, et al., Results on intense beam focusing and neutralization from the neutralized beam experiment, Phys. Plasmas 11 (2004) 2890-2898; P.K. Roy, S.S. Yu, E. Henestroza, A. Anders, F.M. Bieniosek, et al., Drift compression of an intense neutralized ion beam, Phys. Rev. Lett. 95 (2005) 234801.

    [42] T. Someya, S. Kawata, T. Nakamura, A.I. Ogoyski, K. Shimizu, et al., Beam final transport and direct-drive pellet implosion in heavy-ion fusion, Fusion Sci. Tech. 43 (2003) 282-289.

    [43] D.R. Welch, D.V. Rose, B.V. Oliver, R.E. Clark, Simulation techniques for heavy ion fusion chamber transport, Nucl. Instr. Meth. A 464 (2001) 134-139.

    [44] D.V. Rose, D.R. Welch, B.V. Oliver, R.E. Clark, W.M. Sharp, et al., Ballistic-neutralized chamber transport of intense heavy ion beams, Nucl. Instr. Meth. A 464 (2001) 299-304.

    [45] A. Mourou, T. Tajima, S.V. Bulanov, Optics in the relativistic regime- Gerard Rev, Mod. Phys. 78 (2006) 309-372.

    [46] T. Nakamura, S. Kawata, Origin of protons accelerated by an intense laser and the dependence of their energy on the plasma density, Phys. Rev. E 67 (2003) 026403.

    [47] S. Kawata, T. Izumiyama, T. Nagashima, M. Takano, D. Barada, et al., Laser ion acceleration toward future ion beam cancer therapy e numerical simulation study, Laser Ther. 22 (2) (2013) 103-114.

    [48] T. Okada, K. Niu, Filamentation and two-stream instabilities of light ion beams in fusion target chambers, J. Phys. Soc. Jpn. 50 (1981) 3845-3846.

    [49] R.R. Peterson, C.L. Olson, Pre-formed plasma channels for ion beam fusion, in: Proceedings of the 13th International Conference on Laser Interactions and Related Plasma Phenomena, AIP Conference Proceedings 406, 1997, pp. 259-266.

    [50] H. Qin, C.R. Davidson, W.W. Lee, 3D nonlinear perturbative particle simulations of two-stream collective processes in intense particle beams, Phys. Lett. A 272 (2000) 389-394.

    [51] H. Qin, C.R. Davidson, W.W. Lee, R. Kolesnikov, 3D multispecies nonlinear perturbative particle simulations of collective processes in intense particle beams for heavy ion fusion, Nucl. Instr. Methods Phys. Res. A 464 (2001) 477-483.

    [52] T.Okada, K.Niu, Electromagnetic instability and stopping power of plasma for relativistic electron beams, J. Plasma Phys. 23 (1980) 423-432.

    [53] T. Okada, K. Niu, Effect of collision on the relativistic electromagnetic instability, J. Plasma Phys. 24 (1980) 483-488.

    [54] R.F. Hubbard, D.A. Tidman, Filamentation instability of ion beams focused in pellet-fusion reactors, Phys. Rev. Lett. 41 (1978) 866-869.

    [55] P.F.Ottinger,D.Mosher, S.A.Goldstein,Microstability of a focused ion beam propagating through a z-pinch plasma, Phys. Fluids 22 (1979) 332-337.

    [56] Shigeo Kawata, Shinichi Nishiyama, Masataka Mori, Kenta Naito, Shigeru Kato, et al., Intense-electron-beam transportation through an insulator beam guide, Jpn. J. Appl. Phys. 34 (1995) L520-L522.

    [57] Susumu Hanamori, Shigeo Kawata, Shigeru Kato, Takashi Kikuchi, Akira Fujita, et al., Intense-proton-beam transport through an insulator beam guide, intense-proton- beam transport through an insulator beam guide, Jpn. J. Appl. Phys. 37 (1998) 471-474.

    [58] S. Kawata, T. Someya, T. Nakamura, S. Miyazaki, K. Shimizu, et al., Heavy ion beam final transport through an insulator guide in heavy ion fusion, Laser Part Beams 21 (2003) 27-32.

    [59] A.B. Langdon, B.F. Lasinski, Electromagnetic and relativistic plasma simulation models, Methods Comput. Phys. 6 (1976) 327-366.

    [60] J.M. Dawson, Particle simulation of plasmas, Rev. Mod. Phys. 55 (1983) 403-448.

    [61] C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation, McGraw-Hill, 1985.

    [62] R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles, CRC Press, 1988.

    [63] S. Kato, K. Naito, K. Nawashiro, Y. Kawakita, M. Hakoda, et al., Propagation control of an intense pulsed electron beam and its application to surface treatment, in: Proc. 9th Int. Symp. On High Voltage Eng., Graz, Austria, 1995, pp. 7887-7891.

    [64] K. Sugiura, K. Niu, Nuclear Fusion, Cambridge University Press, 2009.

    [65] J.D. Lindl, Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Phys. Plasmas 2 (1995) 3933-4024.

    [66] S. Kawata, Y. Iizuka, Y. Kodera, A.I. Ogoyski, T. Kikuchi, Robust fuel target in heavy ion inertial fusion, Nucl. Instr. Meth. A 606 (2009) 152-156.

    [67] T. Someya, A.I. Ogoyski, S. Kawata, T. Sasaki, Heavy-ion beam illumination on a direct-driven pellet in heavy-ion inertial fusion, Phys. Rev. ST Accel. Beams 7 (044701) (2004) 1-13.

    [68] S. Skupsky, K. Lee, Uniformity of energy deposition for laser driven fusion, J. Appl. Phys. 54 (1983) 3662-3671.

    [69] L.D. Landau, E.M. Lifshitz, Fluid Mechanic, Oxford Pergamon Press, 1959.

    [70] H. Ertel, Ein neuer hydrodynamischer Wirbelsatz, Meteorol. Zeitschr. Braunschw. 59 (1942) 277-281.

    [71] G.H. Wolf, Dynamic stabilization of the interchange instability of a liquid-gas interface, Phys. Rev. Lett. 24 (1970) 444-446.

    [72] F. Troyon, R. Gruber, Theory of the dynamic stabilization of the Rayleigh-Taylor instability, Phys. Fluids 14 (1971) 2069-2073.

    [73] J.P. Boris, Dynamic stabilization of the imploding shell Rayleigh-Taylor instability, Comments Plasma Phys. Cont. Fusion 3 (1977) 1-13.

    [74] R. Betti, R.L. McCrory, C.P. Verdon, Stability analysis of unsteady ablation fronts, Phys. Rev. Lett. 71 (1993) 3131-3134.

    [75] A.R. Piriz, G.R. Prieto, I.M. Diaz, J.J.L. Cela, Dynamic stabilization of Rayleigh-Taylor instability in Newtonian fluids, Phys. Rev. E 82 (026317) (2010) 1-11.

    [76] A.R. Piriz, S.A. Piriz, N.A. Tahir, Dynamic stabilization of classical Rayleigh-Taylor instability, Phys. Plasmas 18 (092705) (2011) 1-9.

    [77] J. Nuckolls, L. Wood, A. Thiessen, G. Zimmerman, Laser compression of matter to super-high densities: thermonuclear (CTR) applications, Nature 239 (1972) 139-142.

    [78] E.S. Weibel, Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution, Phys. Rev. Lett. 2 (1959) 83-84.

    [79] S. Kawata, T. Kurosaki, K. Noguchi, T. Suzuki, S. Koseki, et al., Wobblers and RayleigheTaylor instability mitigation in HIF target implosion, Nucl. Instr. Meth. A 733 (2013) 211-215.

    [80] S. Kawata, H. Nakashima, Tritium content of a DT pellet in inertial confinement fusion, Laser Part. Beams 10 (1992) 479-484.

    [81] D.T. Goodin, C.R. Gibson, R.W. Petzoldt, N.P. Siegel, L. Thompson, et al., Developing the basis for target injection and tracking in inertial fusion energy power plants, Fusion Eng. Des. 60 (2002) 27-36.

    [82] R.W. Petzoldt, M. Cherry, N.B. Alexander, D.T. Goodin, G.E. Besenbruch, et al., Design of an inertial fusion energy target tracking and position prediction system, Fusion Tech. 39 (2001) 678-683.

    [83] R.W. Petzoldt, D.T. Goodin, A. Nikroo, E. Stephens, N. Siegel, et al., Direct drive target survival during injection in an inertial fusion energy power plant, Nucl. Fusion 42 (2002) 1351-1356.

    [84] M. Murakami, J. Meyer-ter-Vehn, Radiation symmetrization in indirectly driven ICF targets, Nucl. Fusion 31 (1991) 1333-1342.

    [85] J. Sasaki, T. Nakamura, Y. Uchida, T. Someya, K. Shimizu, et al., Beam non-uniformity smoothing using density valley formed by heavy ion beam deposition in inertial confinement fusion fuel pellet, Jpn. J. Appl. Phys. 40 (2001) 968-971.

    [86] M. Murakami, Irradiation system based on dodecahedron for inertial confinement fusion, Appl. Phys. Lett. 27 (1995) 1587-1589.

    [87] T. Peter, J. Meyer-ter-Vehn, Energy loss of heavy ions in dense plasma. I. Linear and nonlinear Vlasov theory for the stopping power, Phys. Rev. A 43 (1991) 1998-2014.

    [88] T. Peter, J. Meyer-ter-Vehn, Energy loss of heavy ions in dense plasma. II. Nonequilibrium charge states and stopping powers, Phys. Rev. A 43 (1991) 2015-2030.

    [89] J.P. Bondorf, S.I.A. Garpman, J. Zimanyi, A simple analytic hydrodynamic model for expanding fireballs,, Nucl. Phys. A296 (1978) 320-332.

    [90] Ya. B. Zel'dovich, Yu. P. Raizer, Physics of Shock Waves and Hightemperature Hydrodynamic Phenomena, Dover Pub. Inc., New York, 2002.

    [91] HIF VNL, http://hif.lbl.gov/.

    [92] FAIR, http://www.fair-center.eu/public/what-is-fair.html .

    [93] S. Kawata, K. Horioka, M. Murakami, Y. Oguri, J. Hasegawab, et al., Studies on heavy ion fusion and high energy density physics in Japan, Nuc. Instr. Methods Phys. Res. A 577 (2007) 21-29.

    [94] K. Niu, S. Kawata, Proposal of power plant by light ion beam fusion, Fusion Technol. 11 (1987) 365-373.

    S. Kawata, T. Karino, A.I. Ogoyski. Review of heavy-ion inertial fusion physics[J]. Matter and Radiation at Extremes, 2016, 1(2): 89
    Download Citation