• Acta Physica Sinica
  • Vol. 68, Issue 3, 034204-1 (2019)
Juan Li, Jia-Ming Li, Chun-Xiao Cai, Heng-Xin Sun, Kui Liu*, and Jiang-Rui Gao
DOI: 10.7498/aps.68.20181625 Cite this Article
Juan Li, Jia-Ming Li, Chun-Xiao Cai, Heng-Xin Sun, Kui Liu, Jiang-Rui Gao. Enhancement of continuous-variable hyperentanglement by optimizing pump mode[J]. Acta Physica Sinica, 2019, 68(3): 034204-1 Copy Citation Text show less

Abstract

In recent years, more and more researchers have paid attention to the hyperentanglement, because it plays a very important role in the quantum information and quantum communication. Continuous-variable hyperentangled state with orbital angular momentum and spin angular momentum has a promising application in the parallel processing of continuous-variable multi-channel quantum information and multiparameters quantum metrology. Recently Liu et al. (2014 Phys. Rev. Lett.113 170501) have produced a quantum correlation of about 1.00 dB for the continuous-variable hyperentangled state by a type-II non-degenerate optical parametric amplifier. The generation of continuous-variable hyperentangled state is affected by the mode matching between the pump field and the down-conversion field, since the hyperentanglement contains spatial high-order transverse mode entanglement. In the present paper, we first theoretically analyze the relationship between the pump and the two down-conversion modes and demonstrate the dependence of the inseparability on normalized pump power for the different pump modes. Hence, we find that the optimal pump mode is the superposition of ${\rm{LG}}_0^0$ mode and ${\rm{LG}}_1^0$ mode. However, the optimal pump mode is rather complicated and difficult to experimentally generate, in the alternative scheme the ${\rm{LG}}_1^0$ mode is used as the pump field to obtain the optimal entanglement. In the experiment, the ${\rm{LG}}_1^0$ mode is produced by converting the HG11 mode with a π/2 converter, and here the HG11 mode is achieved by tailoring the fundamental mode with a four-quadrant phase mask and a filtering cavity. Then the ${\rm{LG}}_0^0$ mode or ${\rm{LG}}_1^0$ mode is used as the pump field to drive the non-degenerate optical parametric amplifier operating in spatial multimode. When the non-degenerate optical parametric amplifier is operated in the de-amplification, the hyperentanglement with orbital angular momentum and spin angular momentum is produced. The output entangled b
$\begin{split}\hat H = & {\rm{i}}\hbar {\varepsilon _{\rm{p}}}(\hat a_{\rm{p}}^\dagger - {\hat a_{\rm{p}}}) + {\rm{i}}\hbar \chi \varGamma \\ &\times({\hat a_{\rm{p}}}\hat a_{{\rm{i}},1}^\dagger \hat a_{{\rm{s,}} - 1}^\dagger - \hat a_{\rm{p}}^\dagger {\hat a_{{\rm{i}},1}}{\hat a_{{\rm{s}}, - 1}} \\ &+ {\hat a_{\rm{p}}}\hat a_{{\rm{i}}, - 1}^\dagger \hat a_{{\rm{s}},1}^\dagger - \hat a_{\rm{p}}^\dagger {\hat a_{{\rm{i}}, - 1}}{\hat a_{{\rm{s}},1}}).\end{split}$(1)

View in Article

$\begin{split} & {{\dot {\hat a}}_{\rm{p}}} = {\varepsilon _{\rm{p}}} - {\gamma _{\rm{p}}}{{\hat a}_{\rm{p}}} - \chi \varGamma {{\hat a}_{{\rm{i}},1}}{{\hat a}_{{\rm{s}}, - 1}} - \chi \varGamma {{\hat a}_{{\rm{i}}, - 1}}{{\hat a}_{{\rm{s}},1}},\\ & {{\dot {\hat a}}_{{\rm{i}}, \pm 1}} = - \gamma {'_{{\rm{i}}, \pm 1}}{{\hat a}_{{\rm{i}}, \pm 1}} \!+\! \chi \varGamma {{\hat a}_{\rm{p}}}\hat a_{{{\rm s}, \mp 1}}^\dagger \!+\! \sqrt {2{\gamma _{{\rm{i}}, \pm 1}}} \hat b_{{\rm{i}}, \pm 1}^{{\rm{in}}} \\ & \quad \quad \quad + \sqrt {2{\mu _{{\rm{i}}, \pm 1}}} \hat c_{{\rm{i, \pm 1}}}^{{\rm{in}}},\\ & {{\dot {\hat a}}_{{\rm s}, \pm 1}} = - \gamma {'_{{\rm s}, \pm 1}}{{\hat a}_{{\rm s}, \pm 1}} + \chi \varGamma {{\hat a}_{\rm{p}}}\hat a_{{{\rm i}, \mp 1}}^\dagger \\ & \quad \quad \quad + \sqrt {2{\gamma _{{\rm s}, \pm1}}} \hat b_{{\rm{s, \pm 1}}}^{{\rm{in}}} + \sqrt {2{\mu _{{\rm s}, \pm 1}}} \hat c_{{\rm{s, \pm 1}}}^{{\rm{in}}}, \end{split}$(2)

View in Article

$\varGamma = \int_{ - \infty }^{ + \infty } {{\nu ^{\rm{p}}}({{r}}){\mu ^{\rm{s}}}^ * ({{r}}){\mu ^{\rm{i}}}^ * ({{r}})} {\rm{d}}{{r}},$(3)

View in Article

${V_{{{\hat X}_{{\rm{s}}, \pm 1}} + {{\hat X}_{{\rm{i,\mp1}}}}}} = {V_{{{\hat P}_{_{{\rm{s,}} \pm {\rm{1}}}}} - {{\hat P}_{{\rm{i,\mp1}}}}}} = 1 - {\eta _{{\rm{esc}}}}\frac{{4\sigma }}{{{{(1 + \sigma )}^2} + {\varOmega ^2}}}, $(4)

View in Article

$V = {\rm{2}} - {\eta _{{\rm{esc}}}}\frac{{8\sqrt {{{{p_{{\rm{re}}}}} / {{p_{{\rm{th}}}}}}} }}{{{{(1 + \sqrt {{{{p_{{\rm{re}}}}} / {{p_{{\rm{th}}}}}}} )}^2} + {\varOmega ^2}}} < 2, $(5)

View in Article

$\varGamma = \sum\limits_{p = 0}^\infty {{c_p}\int_{ - \infty }^{ + \infty } {{\nu _{0p}}({{r}})\mu _{_1}^ * ({{r}})\mu _{_{ - 1}}^ * ({{r}})} {\rm{d}}{{r}}} = \sum\limits_{p = 0}^\infty {{c_p}{\varGamma _{0p}}}, $(6)

View in Article

$\begin{split} & \left\langle {{\Delta ^2}\left( {{{\hat X}_{{\rm{i,H01}}}} + {{\hat X}_{{\rm{s,H0}}1}}} \right)} \right\rangle + \left\langle {{\Delta ^2}\left( {{{\hat P}_{{\rm{i,H0}}1}} - {{\hat P}_{{\rm{s,H01}}}}} \right)} \right\rangle \\ = \; &{\rm{1}}{\rm{.27}} \pm 0.02 < 2,\\ &\left\langle {{\Delta ^2}\left( {{{\hat X}_{{\rm{i,H}}10}} + {{\hat X}_{{\rm{s,H}}10}}} \right)} \right\rangle + \left\langle {{\Delta ^2}\left( {{{\hat P}_{{\rm{i,H10}}}} - {{\hat P}_{{\rm{s,H}}10}}} \right)} \right\rangle \\ = \; &{\rm{1}}{\rm{.19}} \pm 0.02 < 2, \end{split}$(7)

View in Article

$\begin{split} & \left\langle {{\Delta ^2}\left( {{{\hat X}_{{\rm{i,H01}}}} + {{\hat X}_{{\rm{s,H01}}}}} \right)} \right\rangle + \left\langle {{\Delta ^2}\left( {{{\hat P}_{{\rm{i,H01}}}} - {{\hat P}_{{\rm{s,H01}}}}} \right)} \right\rangle \\ =\; &{\rm{0}}{\rm{.99}} \pm 0.02 < 2,\\ &\left\langle {{\Delta ^2}\left( {{{\hat X}_{{\rm{i,H10}}}} + {{\hat X}_{{\rm{s,H10}}}}} \right)} \right\rangle + \left\langle {{\Delta ^2}\left( {{{\hat P}_{{\rm{i,H10}}}} - {{\hat P}_{{\rm{s,H}}10}}} \right)} \right\rangle \\ =\; & {\rm{0}}{\rm{.97}} \pm 0.02 < 2. \end{split}$(8)

View in Article

$\begin{split} V({\hat a_{ + 1}},{\hat a_{ - 1}}) = & \left\langle {{\Delta ^2}\left( {{{\hat X}_{ + 1}} + {{\hat X}_{ - 1}}} \right)} \right\rangle \\ & + \left\langle {{\Delta ^2}\left( {{{\hat P}_{ + 1}} - {{\hat P}_{ - 1}}} \right)} \right\rangle < 2,\end{split} $(9)

View in Article

$V({\hat a_{\rm{s}}},{\hat a_{\rm{i}}}) = \left\langle {{\Delta ^2}\left( {{{\hat X}_{\rm{i}}} + {{\hat X}_{\rm{s}}}} \right)} \right\rangle + \left\langle {{\Delta ^2}\left( {{{\hat P}_{\rm{i}}} - {{\hat P}_{\rm{s}}}} \right)} \right\rangle < 2,$(10)

View in Article

Juan Li, Jia-Ming Li, Chun-Xiao Cai, Heng-Xin Sun, Kui Liu, Jiang-Rui Gao. Enhancement of continuous-variable hyperentanglement by optimizing pump mode[J]. Acta Physica Sinica, 2019, 68(3): 034204-1
Download Citation