• Chinese Journal of Lasers
  • Vol. 51, Issue 12, 1202407 (2024)
Linsen Chen1,2,*, Wenbin Huang1,2, Donglin Pu1,2, Wen Qiao1,2..., Fengbin Zhou1,2, Sui Bowen1,2 and Zhi Meng1,2|Show fewer author(s)
Author Affiliations
  • 1College of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, Jiangsu , China
  • 2Engineering Research Center of Digital Laser Imaging and Display, Ministry of Education, Suzhou 215006, Jiangsu , China
  • show less
    DOI: 10.3788/CJL240664 Cite this Article Set citation alerts
    Linsen Chen, Wenbin Huang, Donglin Pu, Wen Qiao, Fengbin Zhou, Sui Bowen, Zhi Meng. Development and Application of Laser Direct Writing Lithography Technology (Invited)[J]. Chinese Journal of Lasers, 2024, 51(12): 1202407 Copy Citation Text show less
    References

    [1] Zuo F Y, Ma S H, Zhao W et al. An ultraviolet-lithography-assisted sintering method for glass microlens array fabrication[J]. Micromachines, 14, 2055(2023).

    [2] Gong J W, Zhou J, Sun H F et al. Mask-shifting-based projection lithography for microlens array fabrication[J]. Photonics, 10, 1135(2023).

    [3] Gilinsky S D, Zohrabi M, Lim W Y et al. Fabrication and characterization of a two-dimensional individually addressable electrowetting microlens array[J]. Optics Express, 31, 30550-30561(2023).

    [4] Ivliev N, Evdokimova V, Podlipnov V et al. First earth-imaging CubeSat with harmonic diffractive lens[J]. Remote Sensing, 14, 2230(2022).

    [5] Zhu J C, Zhou J K, Shen W M. Design of polarization-independent two-dimensional binary blazed grating[J]. Journal of Infrared and Millimeter Waves, 39, 149-156(2020).

    [6] Kim J, Jeon P, Lee H et al. High-frequency sinusoidal structured light generation with the anti-blaze condition of a digital micromirror device[J]. Optics and Lasers in Engineering, 176, 108053(2024).

    [7] Li C H, Wieduwilt T, Wendisch F J et al. Author correction: metafiber transforming arbitrarily structured light[J]. Nature Communications, 15, 990(2024).

    [8] Yuan Q, Wu J J, Zhang H L et al. Pixel-wise calibration method based on the virtual plane for telecentric structured light system[J]. Optics and Lasers in Engineering, 175, 108049(2024).

    [9] Cao H Y, Qiao D Y, Yang D. Phase correction strategy based on structured light fringe projection profilometry[J]. Optics Express, 32, 4137-4157(2024).

    [10] Kumar A, Jain H, Paul A et al. Regularized cost function in wavefront shaping for advancing the contrast of structured light[J]. Applied Optics, 63, 595-603(2024).

    [11] Zhai Y X, Li H W, Wu H X et al. Application of bulk silicon carbide technology in high temperature MEMS sensors[J]. Materials Science in Semiconductor Processing, 173, 108137(2024).

    [12] Harry R I, Zainnudin S, Jeelani S. Optimization of magneto-electric coupling in PVDF/PVDF-TrFE/Fe3O4 thin film nanocomposites for MEMS sensor devices[J]. Materials Science Forum, 1109, 115-121(2023).

    [13] Arun B P, Sugumaran V. Reducing cost with MEMS sensor and improving performance of classifier using probabilistic voting method[J]. Measurement Science and Technology, 35, 015134(2024).

    [14] Dejima K, Nakabeppu O. Correlation between heat transfer and flow in an internal combustion engine evaluated with a MEMS sensor[J]. International Journal of Engine Research, 24, 4396-4412(2023).

    [15] Liu X F, Zhao J, Wang Y G et al. Enhanced toluene gas-sensing properties of MEMS sensor based on Pt-loaded SnO2 nanoparticles[J]. Nanotechnology, 34, 365502(2023).

    [16] Ajayan J, Sreejith S, Manikandan M et al. An intensive study on organic thin film transistors (OTFTs) for future flexible/wearable electronics applications[J]. Micro and Nanostructures, 187, 207766(2024).

    [17] Amani A M, Tayebi L, Abbasi M et al. The need for smart materials in an expanding smart world: MXene-based wearable electronics and their advantageous applications[J]. ACS Omega, 9, 3123-3142(2023).

    [18] Gunawardhana K R S D, Simorangkir R B V B, McGuinness G B et al. The potential of electrospinning to enable the realization of energy-autonomous wearable sensing systems[J]. ACS Nano, 18, 2649-2684(2024).

    [19] Varghese T V, Eixenberger J, Rajabi-Kouchi F et al. Multijet gold nanoparticle inks for additive manufacturing of printed and wearable electronics[J]. ACS Materials Au, 4, 65-73(2023).

    [20] Zarei M, Li M X, Medvedeva E E et al. Flexible embedded metal meshes by sputter-free crack lithography for transparent electrodes and electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 16, 6382-6393(2024).

    [21] Wu Z Y, Xing X L, Sun Y Y et al. Flexible transparent electrode based on Ag nanowires: Ag nanoparticles Co-doped system for organic light-emitting diodes[J]. Materials, 17, 505(2024).

    [22] Perrakis G, Tasolamprou A C, Kakavelakis G et al. Infrared-reflective ultrathin-metal-film-based transparent electrode with ultralow optical loss for high efficiency in solar cells[J]. Scientific Reports, 14, 548(2024).

    [23] Khoshkhati F, Mohammadimasoudi M, Hosseini S N et al. Optimizing liquid crystal cell thickness in electro-optical Fresnel lenses through theoretical calculations and experimental validation[J]. Optics Express, 31, 21407-21416(2023).

    [24] Borjigin G, Kakeya H. Viewing zone expansion of a dual-viewer autostereoscopic display with inclined interleaved linear Fresnel lens arrays and a time-division quadruplexing directional backlight[J]. Optics Express, 31, 17321-17330(2023).

    [25] Kumar V, Bisht D S, Garg H. Mean wavelength-based Fresnel lens solar collector for eliminating the hotpot problem in daylighting systems[J]. Applied Optics, 62, 9188-9197(2023).

    [26] Borjigin G, Kakeya H. Backlight system using an interleaved Fresnel lens array that attains a uniform luminance and two-dimensional directional light control[J]. Optics Letters, 47, 301-304(2022).

    [27] Vu V T, Yeon H, Youn H et al. High diopter spectacle using a flexible Fresnel lens with a combination of grooves[J]. Optics Express, 30, 38371-38382(2022).

    [28] Pedrini G, Li R J, Cao L C et al. Lensless imaging in one shot using the complex degree of coherence obtained by multiaperture interferences[J]. Optics Letters, 49, 718-721(2024).

    [29] Huang Y N, Krishnan G, Goswami S et al. Underwater optical signal detection system using diffuser-based lensless imaging[J]. Optics Express, 32, 1489-1500(2024).

    [30] Xiong Z C, He W J, Wang W B et al. Super-resolution lensless imaging system based on a fast anti-diffraction algorithm[J]. Optics Express, 31, 37395-37407(2023).

    [31] Tseng A A. Recent developments in nanofabrication using focused ion beams[J]. Small, 1, 924-939(2005).

    [32] Vieu C, Carcenac F, Pépin A et al. Electron beam lithography: resolution limits and applications[J]. Applied Surface Science, 164, 111-117(2000).

    [33] Gale M T, Knop K. The fabrication of fine lens arrays by laser beam writing[J]. Proceedings of SPIE, 0398, 347-353(1983).

    [34] Kueck H, Bollerott M, Doleschal W et al. New system for fast submicron laser direct writing[J]. Proceedings of SPIE, 2440, 506-514(1995).

    [35] Seltmann R, Doleschal W, Gehner A et al. New system for fast submicron optical direct writing[J]. Microelectronic Engineering, 30, 123-127(1996).

    [36] Ogai K, Kimura Y, Shimizu R et al. Nanofabrication of grating and dot patterns by electron holographic lithography[J]. Applied Physics Letters, 66, 1560-1562(1995).

    [37] Konkola P T. Design and analysis of a scanning beam interference lithography system for patterning gratings with nanometer-level distortions[D](2003).

    [38] Fang N, Lee H, Sun C et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 308, 534-537(2005).

    [39] Wang C T, Gao P, Zhao Z Y et al. Deep sub-wavelength imaging lithography by a reflective plasmonic slab[J]. Optics Express, 21, 20683-20691(2013).

    [40] Liu L, Liu K P, Zhao Z Y et al. Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer[J]. RSC Advances, 6, 95973-95978(2016).

    [41] Ródenas A, Gu M, Corrielli G et al. Three-dimensional femtosecond laser nanolithography of crystals[J]. Nature Photonics, 13, 105-109(2019).

    [42] Wathuthanthri I, Mao W D, Choi C H. Two degrees-of-freedom Lloyd-mirror interferometer for superior pattern coverage area[J]. Optics Letters, 36, 1593-1595(2011).

    [43] Mao W D, Wathuthanthri I, Choi C H. Tunable two-mirror interference lithography system for wafer-scale nanopatterning[J]. Optics Letters, 36, 3176-3178(2011).

    [44] Mao W D, Wathuthanthri I, Choi C H. Tunable two-mirror interference lithography system[P].

    [45] Kim K R, Yi J, Cho S H et al. SLM-based maskless lithography for TFT-LCD[J]. Applied Surface Science, 255, 7835-7840(2009).

    [46] Gaylord T K, Leibovici M C R, Burrow G M. Pattern-integrated interference[J]. Applied Optics, 52, 61-72(2013).

    [47] Kim T S, Kim J J, Shin H W. Method for laser interference lithography using diffraction grating[P].

    [48] Pati G S, Heilmann R K, Konkola P T et al. Generalized scanning beam interference lithography system for patterning gratings with variable period progressions[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, 20, 2617-2621(2002).

    [49] Burrow G M, Leibovici M C R, Gaylord T K. Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures[J]. Applied Optics, 51, 4028-4041(2012).

    [50] Lee C K, Hsieh C T J, Wu J W et al. Optical design and implementation of a variable-pitch dot matrix writer[J]. Proceedings of SPIE, 3637, 119-129(1999).

    [51] Ye Y, Xu F C, Wei G J et al. Scalable Fourier transform system for instantly structured illumination in lithography[J]. Optics Letters, 42, 1978-1981(2017).

    [52] He M F, Zhu D Z, Wang H Q et al. Advancements in micro-nano optical device based on two-photon direct writing[J]. Acta Optica Sinica, 43, 1623013(2023).

    [53] Liang Z X, Zhao Y Y, Duan X M. Principle and technology of laser super-diffraction lithography[J]. Laser & Optoelectronics Progress, 59, 0922029(2022).

    [54] Gale M T, Rossi M, Pedersen J et al. Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists[J]. Optical Engineering, 33, 3556-3566(1994).

    [55] Höflich K, Jurczyk J, Zhang Y C et al. Direct electron beam writing of silver-based nanostructures[J]. ACS Applied Materials & Interfaces, 9, 24071-24077(2017).

    [56] Yu A G, Liu H P, Blinco J P et al. Patterning of tailored polycarbonate based non-chemically amplified resists using extreme ultraviolet lithography[J]. Macromolecular Rapid Communications, 31, 1449-1455(2010).

    [57] Luo Y, Jiang X X, Liu L et al. Recent advances in plasmonic nanolithography[J]. Nanoscience and Nanotechnology Letters, 10, 1-12(2018).

    [58] Liu Y D, Wang M, Li Y et al. P-208: Late-News Poster: single-exposure fabrication of geometry phase optical elements with arbitrary wavefronts[J]. SID Symposium Digest of Technical Papers, 50, 1866-1869(2019).

    [59] Serak S, Bunning T, Tabiryan N. Ultrafast photoalignment: recording a lens in a nanosecond[J]. Crystals, 7, 338(2017).

    [60] Xiong J H, Yang Q, Li Y et al. Holo-imprinting polarization optics with a reflective liquid crystal hologram template[J]. Light: Science & Applications, 11, 54(2022).

    [61] Yaroshchuk O, Reznikov Y. Photoalignment of liquid crystals: basics and current trends[J]. Journal of Materials Chemistry, 22, 286-300(2012).

    [62] Ryoo H, Kang D W, Hahn J W. Analysis of the line pattern width and exposure efficiency in maskless lithography using a digital micromirror device[J]. Microelectronic Engineering, 88, 3145-3149(2011).

    [63] Crawford G P, Eakin J N, Radcliffe M D et al. Liquid-crystal diffraction gratings using polarization holography alignment techniques[J]. Journal of Applied Physics, 98, 123102(2005).

    [64] Wang C, Peng Z, Liu Y et al. Two-dimensional symmetrical radial sub-aperture coherence and the local precision defect elimination method for high-precision beam steering[J]. Optics Express, 27, 18751-18765(2019).

    [65] Li T, Yang Y, Liu X Y et al. Enhanced optical edge detection based on a Pancharatnam‒Berry flat lens with a large focal length[J]. Optics Letters, 45, 3681-3684(2020).

    [66] Nicolescu E, Escuti M J. Polarization-independent tunable optical filters using bilayer polarization gratings[J]. Applied Optics, 49, 3900-3904(2010).

    [67] Oh C, Escuti M J. Achromatic diffraction from polarization gratings with high efficiency[J]. Optics Letters, 33, 2287-2289(2008).

    [68] Chan K F, Feng Z, Yang R et al. High-resolution maskless lithography[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2, 331-339(2003).

    [69] Kim J, Li Y M, Miskiewicz M N et al. Fabrication of ideal geometric-phase holograms with arbitrary wavefronts[J]. Optica, 2, 958-964(2015).

    [70] Miskiewicz M N, Escuti M J. Optimization of direct-write polarization gratings[J]. Optical Engineering, 54, 025101(2015).

    [71] Miskiewicz M N, Escuti M J. Direct-writing of complex liquid crystal patterns[J]. Optics Express, 22, 12691-12706(2014).

    [72] Jepsen M L, Ammer M J, Bolotski M et al. High resolution LCOS microdisplay for single-, double- or triple-panel projection systems[J]. Displays, 23, 109-114(2002).

    [73] Li Y, Liu Y D, Li S D et al. Single-exposure fabrication of tunable Pancharatnam‒Berry devices using a dye-doped liquid crystal[J]. Optics Express, 27, 9054-9060(2019).

    [74] de Sio L, Roberts D E, Liao Z et al. Digital polarization holography advancing geometrical phase optics[J]. Optics Express, 24, 18297-18306(2016).

    [75] Zhang X J, Zhou X H, Yang Z X et al. High-throughput and controllable manufacturing of liquid crystal polymer planar microlens array for compact fingerprint imaging[J]. Optics Express, 30, 3101-3112(2022).

    [76] Wang S X, Chen Z X, Liu H L et al. Tm∶YAP waveguide pulsed lasers of femtosecond laser direct writing[J]. Acta Optica Sinica, 43, 1623018(2023).

    [77] Meng Z, Huang W B, Zhang L X et al. Large aperture and defect-free liquid crystal planar optics enabled by high-throughput pulsed polarization patterning[J]. Optics Express, 31, 30435-30445(2023).

    [78] Tabiryan N V, Roberts D E, Liao Z et al. Advances in transparent planar optics: enabling large aperture, ultrathin lenses[J]. Advanced Optical Materials, 9, 2001692(2021).

    [79] Luo Z Y, Li Y, Semmen J et al. Achromatic diffractive liquid-crystal optics for virtual reality displays[J]. Light: Science & Applications, 12, 230(2023).

    [80] Li Y, Zhan T, Wu S T. Flat cholesteric liquid crystal polymeric lens with low f-number[J]. Optics Express, 28, 5875-5882(2020).

    [81] Yang Z X, Shou Q L, Zhou X H et al. Wide field of view chiral imaging with a liquid crystal planar lens enabled by digitalized nanogratings[J]. Optics Express, 30, 44864-44877(2022).

    [82] Orzechowski P K, Gibson S, Tsao T C et al. Adaptive suppression of optical jitter with a new liquid crystal beam steering device[J]. Proceedings of SPIE, 6569, 65690V(2007).

    [83] Chigrinov V, Prudnikova E, Kozenkov V et al. Azo-dye aligning layers for liquid-crystal cells[J]. Journal of the Society for Information Display, 11, 579-583(2003).

    [84] Chen W, Yu Y, Mu Q Q et al. Super-broadband geometric phase devices based on circular polarization converter with mirror symmetry[J]. Applied Physics Letters, 119, 101103(2021).

    [85] Kim J, Oh C, Serati S et al. Wide-angle, nonmechanical beam steering with high throughput utilizing polarization gratings[J]. Applied Optics, 50, 2636-2639(2011).

    [86] Kim J, Oh A C, Escuti A M J et al. Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings[J]. Proceedings of SPIE, 7093, 709302(2008).

    Linsen Chen, Wenbin Huang, Donglin Pu, Wen Qiao, Fengbin Zhou, Sui Bowen, Zhi Meng. Development and Application of Laser Direct Writing Lithography Technology (Invited)[J]. Chinese Journal of Lasers, 2024, 51(12): 1202407
    Download Citation