• Photonics Research
  • Vol. 12, Issue 11, 2633 (2024)
Yupeng Zhu1,2, Zhi Liu1,2,3,*, Zhipeng Liu1,2, Yiling Hu1,2..., Qinxing Huang1,2, Yazhou Yang1,2, Xiangquan Liu1,2, Tao Men1,2, Guangze Zhang1,2, Jun Zheng1,2, Yuhua Zuo1,2,4,* and Buwen Cheng1,2|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3e-mail: zhiliu@semi.ac.cn
  • 4e-mail: yhzuo@semi.ac.cn
  • show less
    DOI: 10.1364/PRJ.528458 Cite this Article Set citation alerts
    Yupeng Zhu, Zhi Liu, Zhipeng Liu, Yiling Hu, Qinxing Huang, Yazhou Yang, Xiangquan Liu, Tao Men, Guangze Zhang, Jun Zheng, Yuhua Zuo, Buwen Cheng, "112 Gbps CMOS-compatible waveguide germanium photodetector for the 2 μm wavelength band with a 3.64 A/W response," Photonics Res. 12, 2633 (2024) Copy Citation Text show less
    References

    [1] D. J. Richardson. Applied physics. Filling the light pipe. Science, 330, 327-328(2010).

    [2] D. J. Richardson, J. M. Fini, L. E. Nelson. Space-division multiplexing in optical fibres. Nat. Photonics, 7, 354-362(2013).

    [3] A. Ellis, D. Rafique, S. Sygletos. Capacity in fiber optic communications-the case for a radically new fiber. IEEE Photonic Society 24th Annual Meeting, 304-305(2011).

    [4] P. Roberts, F. Couny, H. Sabert. Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express, 13, 236-244(2005).

    [5] E. Desurvire, C. Kazmierski, F. Lelarge. Science and technology challenges in XXIst century optical communicationsChallenges scientifiques et technologiques des télécommunications optiques du XXIème siècle. C.R. Phys., 12, 387-416(2011).

    [6] Z. Li, A. Heidt, N. Simakov. Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800–2050 nm window. Opt. Express, 21, 26450-26455(2013).

    [7] R. Soref. Enabling 2 μm communications. Nat. Photonics, 9, 358-359(2015).

    [8] M. Nedeljkovic, A. Khokhar, Y. Hu. Silicon photonic devices and platforms for the mid-infrared. Opt. Mater. Express, 3, 1205-1214(2013).

    [9] Z. Wang, Y. Liu, Z. Wang. Ultra-broadband 3 dB power splitter from 1.55 to 2 μm wave band. Opt. Lett., 46, 4232-4235(2021).

    [10] Y. Liu, Z. Li, D. Li. Thermo-optic tunable silicon arrayed waveguide grating at 2-μm wavelength band. IEEE Photonics J., 12, 4900308(2020).

    [11] J. Li, Y. Liu, Y. Meng. 2-μm wavelength grating coupler, bent waveguide, and tunable microring on silicon photonic MPW. IEEE Photonics Technol. Lett., 30, 471-474(2018).

    [12] X. Wang, W. Shen, W. Li. High-speed silicon photonic Mach–Zehnder modulator at 2 μm. Photonics Res., 9, 535-540(2021).

    [13] M. Li, J. Zheng, X. Liu. Sn composition graded GeSn photode tectors on Si substrate with cutoff wavelength of 3.3 μm for mid-infrared Si photonics. Appl. Phys. Lett., 120, 121103(2022).

    [14] X. Li, L. Peng, Z. Liu. 30 GHz GeSn photodetector on SOI substrate for 2 μm wavelength application. Photonics Res., 9, 494-500(2021).

    [15] D. Thomson, L. Shen, J. Ackert. Optical detection and modulation at 2 μm–2.5 μm in silicon. Opt. Express, 22, 10825-10830(2014).

    [16] Y. Peng, Y. Yuan, W. V. Sorin. All-silicon microring avalanche photodiodes with a >65 A/W response. Opt. Lett., 48, 1315-1318(2023).

    [17] M. Sakib, P. Liao, R. Kumar. A 112 Gb/s all-silicon micro-ring photodetector for datacom applications. Optical Fiber Communication Conference, Th4A-2(2020).

    [18] Z. Zhao, C. Ho, Q. Li. Monolithic germanium PIN waveguide photodetector operating at 2 μm wavelengths. Optical Fiber Communication Conference, W4G-3(2020).

    [19] J.-B. You, H. Kwon, J. Kim. Photon-assisted tunneling for sub-bandgap light detection in silicon PN-doped waveguides. Opt. Express, 25, 4284-4297(2017).

    [20] R. McIntyre. Multiplication noise in uniform avalanche diodes. IEEE Trans. Electron Devices, ED-13, 164-168(1966).

    [21] D. Benedikovic, L. Virot, G. Aubin. Silicon-germanium avalanche receivers with fJ/bit energy consumption. IEEE J. Sel. Topics Quantum Electron., 28, 3802508(2021).

    [22] Y. Chen, X. Zhao, J. Huang. Dynamic model and bandwidth characterization of InGaAs/GaAsSb type-II quantum wells PIN photodiodes. Opt. Express, 26, 35034-35045(2018).

    [23] B. Tossoun, J. Zang, S. J. Addamane. InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength. J. Lightwave Technol., 36, 4981-4987(2018).

    [24] Y. Chen, Z. Xie, J. Huang. High-speed uni-traveling carrier photodiode for 2 μm wavelength application. Optica, 6, 884-889(2019).

    [25] Q. Chen, H. Zhou, S. Xu. A route toward high-detectivity and low-cost short-wave infrared photodetection: GeSn/Ge multiple-quantum-well photodetectors with a dielectric nanohole array metasurface. ACS Nano, 17, 12151-12159(2023).

    [26] J. Cui, J. Zheng, Y. Zhu. High-speed GeSn resonance cavity enhanced photodetectors for a 50 Gbps Si-based 2 μm band communication system. Photonics Res., 12, 767-773(2024).

    [27] J. J. Ackert, D. J. Thomson, L. Shen. High-speed detection at two micrometres with monolithic silicon photodiodes. Nat. Photonics, 9, 393-396(2015).

    [28] J. Wang, X. Wang, Y. Li. High-responsivity on-chip waveguide coupled germanium photodetector for 2 μm waveband. Photonics Res., 12, 115-122(2024).

    Yupeng Zhu, Zhi Liu, Zhipeng Liu, Yiling Hu, Qinxing Huang, Yazhou Yang, Xiangquan Liu, Tao Men, Guangze Zhang, Jun Zheng, Yuhua Zuo, Buwen Cheng, "112 Gbps CMOS-compatible waveguide germanium photodetector for the 2 μm wavelength band with a 3.64 A/W response," Photonics Res. 12, 2633 (2024)
    Download Citation