[1] Lin X, Deng H, Jia Y et al. Self-powered Sb2S3 thin-film photodetectors with high detectivity for weak light signal detection[J]. ACS Applied Materials & Interfaces, 14, 12385-12394(2022).
[2] Xu F, Wang Y Q, Zhang X F et al. Subpixel three-dimensional laser imaging with a downscaled avalanche photodiode array using code division multiple access[J]. Communications Physics, 2, 1(2018).
[3] Singh A, Pal R. Impulse response measurement in the HgCdTe avalanche photodiode[J]. Solid-State Electronics, 142, 41-46(2018).
[4] Liu G P, Wang X, Li M N et al. Effects of high-energy proton irradiation on separate absorption and multiplication GaN avalanche photodiode[J]. Nuclear Science and Techniques, 29, 139(2018).
[5] Xu F, Wang Y Q, Zhang X F et al. Author correction: subpixel three-dimensional laser imaging with a downscaled avalanche photodiode array using code division multiple access[J]. Communications Physics, 4, 16(2021).
[6] Alirezaei I S, Andre N, Flandre D. Enhanced ultraviolet avalanche photodiode with 640-nm-thin silicon body based on SOI technology[J]. IEEE Transactions on Electron Devices, 67, 4641-4644(2020).
[7] Nada M, Yamada Y, Matsuzaki H. Responsivity-bandwidth limit of avalanche photodiodes: toward future Ethernet systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 3800811(2018).
[8] Koehler-Sidki A, Dynes J, Lucamarini M et al. Best-practice criteria for practical security of self-differencing avalanche photodiode detectors in quantum key distribution[J]. Physical Review Applied, 9, 044027(2018).
[9] Kuzum D, Park J H, Krishnamohan T et al. The effect of donor/acceptor nature of interface traps on Ge MOSFET characteristics[J]. IEEE Transactions on Electron Devices, 58, 1015-1022(2011).
[10] Fan Y B, Shi T T, Ji W J et al. Ultra-narrowband interference circuits enable low-noise and high-rate photon counting for InGaAs/InP avalanche photodiodes[J]. Optics Express, 31, 7515-7522(2023).
[11] Ben Arbia M, Demir I, Kaur N et al. Experimental insights toward carrier localization in in-rich InGaAs/InP as candidate for SWIR detection: microstructural analysis combined with optical investigation[J]. Materials Science in Semiconductor Processing, 153, 107149(2023).
[12] Li Z P, Huang X, Cao Y et al. Single-photon computational 3D imaging at 45 km[J]. Photonics Research, 8, 1532-1540(2020).
[13] Huang J H, Ren M, Liang Y et al. Photon-counting laser ranging with InGaAs/InP avalanche photodiode in the passively quenched and 1-GHz sinusoidally gated[J]. Optik, 125, 3744-3747(2014).
[14] Bao S Y, Mu H L, Zhou J R et al. Effect of different crystalline Ge film bonding layers on properties of InGaAs/Si avalanche photodiodes[J]. Chinese Journal of Lasers, 50, 1403001(2023).
[15] Li X Z, Zhang J Y, Yue C et al. High performance visible-SWIR flexible photodetector based on large-area InGaAs/InP PIN structure[J]. Scientific Reports, 12, 7681(2022).
[16] Zhang J, Itzler M A, Zbinden H et al. Advances in InGaAs/InP single-photon detector systems for quantum communication[J]. Light: Science & Applications, 4, e286(2015).
[17] Liu Y X, Sun J Y, Tong L et al. High-performance one-dimensional MOSFET array photodetectors in the 0.8-µm standard CMOS process[J]. Optics Express, 30, 43706-43717(2022).
[18] Zhang Y C, Wu Z H, Xia J et al. Infrared metasurface absorber based on silicon-based CMOS process[J]. Optics Express, 30, 32937-32947(2022).
[19] Gity F, Daly A, Snyder B et al. Ge/Si heterojunction photodiodes fabricated by low temperature wafer bonding[J]. Optics Express, 21, 17309-17314(2013).
[20] He S Q, Ke H P, Yan L et al. Effect of interface state at semiconductor-insulator contact interface in Ge/Si heterogeneous bonding on photoelectric transport characteristics of heterojunction[J]. Acta Optica Sinica, 40, 1931001(2020).
[21] Shu Q J, Huang P R, Yang F H et al. Study on crystal growth of Ge/Si quantum dots at different Ge deposition by using magnetron sputtering technique[J]. Scientific Reports, 13, 7511(2023).
[22] Bai X, Li Y F, Fang X W et al. Innovative strategy to optimize the temperature-dependent lattice misfit and coherency of iridium-based γ/γ′ interfaces[J]. Applied Surface Science, 609, 155369(2023).
[23] Li S C, Liang H Y, Li C et al. Lattice mismatch in Ni3Al-based alloy for efficient oxygen evolution[J]. Journal of Materials Science & Technology, 106, 19-27(2022).
[24] Zubialevich V Z, McLaren M, Pampili P et al. Reduction of threading dislocation density in top-down fabricated GaN nanocolumns via their lateral overgrowth by MOCVD[J]. Journal of Applied Physics, 127, 025306(2020).
[25] Bornemann S, Meyer T, Voss T et al. Ablation threshold of GaN films for ultrashort laser pulses and the role of threading dislocations as damage precursors[J]. Optics Express, 30, 47744-47760(2022).
[26] Currie M T, Samavedam S B, Langdo T A et al. Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing[J]. Applied Physics Letters, 72, 1718-1720(1998).
[27] Wang X H, Wang X H, Shi T Y et al. Defects level and internal electric field co-induced direct Z-scheme charge transfer for efficient photocatalytic H2 evolution over ZnIn2S4/In2Se3[J]. Applied Surface Science, 613, 155963(2023).
[28] Zhou X Q, Ning L X, Qiao J W et al. Interplay of defect levels and rare earth emission centers in multimode luminescent phosphors[J]. Nature Communications, 13, 7589(2022).
[29] Zhu X, Zhang Y W, Zhang S N et al. Defect energy levels in monoclinic β-Ga2O3[J]. Journal of Luminescence, 246, 118801(2022).
[30] Simola E T, De Iacovo A, Frigerio J et al. Voltage-tunable dual-band Ge/Si photodetector operating in VIS and NIR spectral range[J]. Optics Express, 27, 8529-8539(2019).
[31] Ke S Y, Lin S M, Ye Y J et al. Temperature-dependent interface characteristic of silicon wafer bonding based on an amorphous germanium layer deposited by DC-magnetron sputtering[J]. Applied Surface Science, 434, 433-439(2018).
[32] Ke S Y, Ye Y J, Lin S M et al. Low-temperature oxide-free silicon and germanium wafer bonding based on a sputtered amorphous Ge[J]. Applied Physics Letters, 112, 041601(2018).
[33] Ke S Y, Chen Z X, Zhou J R et al. Theoretical prediction of high-performance room-temperature InGaAs/Si single-photon avalanche diode fabricated by semiconductor interlayer bonding[J]. IEEE Transactions on Electron Devices, 68, 1694-1701(2021).
[34] Ke S Y, Xiao X T, Jiao J L et al. Theoretical achievement of THz gain-bandwidth product of wafer-bonded InGaAs/Si avalanche photodiodes with poly-Si bonding layer[J]. IEEE Transactions on Electron Devices, 69, 1123-1128(2022).
[35] Yun J, Bae M S, Baek J S et al. Modeling of optimized lattice mismatch by carbon-dioxide laser annealing on (In, Ga) co-doped ZnO multi-deposition thin films introducing designed bottom layers[J]. Nanomaterials, 13, 45(2022).
[36] Huang M Y, Li S, Cai P F et al. Germanium on silicon avalanche photodiode[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 3800911(2018).
[37] Duan N, Liow T Y, Lim A E J et al. 310 GHz gain-bandwidth product Ge/Si avalanche photodetector for 1550 nm light detection[J]. Optics Express, 20, 11031-11036(2012).
[38] Wang X X, Chen L, Chen W et al. 80 GHz bandwidth-gain-product Ge/Si avalanche photodetector by selective Ge growth[C], OMR3(2009).
[39] Kang Y M, Morse M, Paniccia M J et al. Monolithic Ge/Si avalanche photodiodes[C], 25-27(2009).
[40] Zaoui W S, Chen H W, Bowers J E et al. Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product[J]. Optics Express, 17, 12641-12649(2009).
[41] Wanitzek M, Oehme M, Schwarz D et al. Ge-on-Si avalanche photodiodes for LIDAR applications[C], 8-12(2020).