[1] Chang C L, Bang K, Wetzstein G, et al. Toward the next-generation VR/AR optics: A review of holographic near-eye displays from a human-centric perspective[J]. Optica, 2020, 7(11): 1563-1578.
[2] Güne A, Koray K, Afsun , et al. Applications of augmented reality in ophthalmology[J]. Biomed. Opt. Express, 2021, 12(1): 511-538.
[9] Bernard C K, Maria P. Holographic optics in planar optical systems for next generation small form factor mixed reality headsets[J]. Light: Advanced Manufacturing, 2022, 3(42): 1-31.
[10] Teich M, Schuster T, Leister N, et al. Real-time, large-depth holographic 3D head-up display: selected aspects[J]. Appl. Opt., 2022, 61(5): B156-B163.
[11] Nakao A, Morimoto R, Kato Y, et al. Integrated waveguide-type red-green-blue beam combiners for compact projection-type displays[J]. Opt. Commun., 2014, 330: 45-48.
[12] Li L, Lin H, Qiao S, et al. Monolithically integrated stretchable photonics[J]. Light: Sci. Appl., 2018, 7(2): 17138.
[13] Sakamoto J, Goh T, Katayose S, et al. Compact and low-loss RGB coupler using mode-conversion waveguides[J]. Opt. Commun., 2018, 420: 46-51.
[16] Nagelberg S, Zarzar L D, Nicolas N, et al. Reconfigurable and responsive droplet-based compound micro-lenses[J]. Nature Communications, 2017, 8: 14673.
[17] Liu Z, Lin C H, Hyun B R, et al. Micro-light-emitting diodes with quantum dots in display technology[J]. Light: Sci. Appl., 2020, 9(1): 83.
[18] Zhou X, Tian P, Sher C W, et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display[J]. Progress in Quantum Electron., 2020, 71: 100263.
[19] Hu Y, Luo X, Chen Y, et al. 3D-integrated metasurfaces for full-colour holography[J]. Light: Sci. Appl., 2019, 8(1): 86.
[20] Choi M K, Yang J, Hyeon T, et al. Flexible quantum dot light-emitting diodes for next-generation displays[J]. Npj Flexible Electron., 2018, 2(1): 10.
[21] Li Y F, Chou S Y, Huang P, et al. Stretchable organometal-halide-perovskite quantum-dot lightemitting diodes[J]. Adv. Mater., 2019, 31: 1807516.
[22] Chen Z, Wang G, Wang X. Physical mechanism and response characteristics of unsaturated optical stopping based amorphous arsenic sulfide thin-film waveguides[J]. IEEE Photonics J., 2019, 11(1): 6100910.
[23] Chen Z, Wang G, Wang Xiong, et al. Moving toward optoelectronic logic circuits for visible light: A chalcogenide glass single-mode single-polarization optical waveguide switch[J]. Appl. Opt., 2017, 56(5): 1405-1412.
[24] Sui G, Liu F, Guo H, et al. Flexible broadband white light multimode interference coupler[J]. Opt. Express, 2021, 29(19): 29730-29744.
[25] Besse P A, Bachmann M. Optical bandwidth and fabrication tolerances of multimode interference couplers[J]. J. Lightwave Technol., 1994, 12(6): 1004-1009.
[26] Soldano L B, Pennings E. Optical multi-mode interference devices based on self-imaging: principles and applications[J]. J. Lightwave Technol., 1995, 13(4): 615-627.