• Semiconductor Optoelectronics
  • Vol. 44, Issue 3, 356 (2023)
CHEN Zhi*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2023020802 Cite this Article
    CHEN Zhi. A Comparative Study of Multi-mode Interference RGB Waveguide Combiner for Augmented Reality (AR)[J]. Semiconductor Optoelectronics, 2023, 44(3): 356 Copy Citation Text show less
    References

    [1] Chang C L, Bang K, Wetzstein G, et al. Toward the next-generation VR/AR optics: A review of holographic near-eye displays from a human-centric perspective[J]. Optica, 2020, 7(11): 1563-1578.

    [2] Güne A, Koray K, Afsun , et al. Applications of augmented reality in ophthalmology[J]. Biomed. Opt. Express, 2021, 12(1): 511-538.

    [6] Yin K, Hsiang E L, Zou J, et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: Principles and applications[J]. Light: Sci. Appl., 2022, 11(7): 1344-1365.

    [8] Fretty P. Laser beam scanning fuels augmented realitys future[J]. Laser Focus World: The Magazine for the Photonics & Optoelectronics Industry, 2022(2): 58, 17-20.

    [9] Bernard C K, Maria P. Holographic optics in planar optical systems for next generation small form factor mixed reality headsets[J]. Light: Advanced Manufacturing, 2022, 3(42): 1-31.

    [10] Teich M, Schuster T, Leister N, et al. Real-time, large-depth holographic 3D head-up display: selected aspects[J]. Appl. Opt., 2022, 61(5): B156-B163.

    [11] Nakao A, Morimoto R, Kato Y, et al. Integrated waveguide-type red-green-blue beam combiners for compact projection-type displays[J]. Opt. Commun., 2014, 330: 45-48.

    [12] Li L, Lin H, Qiao S, et al. Monolithically integrated stretchable photonics[J]. Light: Sci. Appl., 2018, 7(2): 17138.

    [13] Sakamoto J, Goh T, Katayose S, et al. Compact and low-loss RGB coupler using mode-conversion waveguides[J]. Opt. Commun., 2018, 420: 46-51.

    [15] Chang S W, Liao W C, Liao Y M, et al. A white random laser[J]. Scientific Reports, 2018, 8(1): 2720.

    [16] Nagelberg S, Zarzar L D, Nicolas N, et al. Reconfigurable and responsive droplet-based compound micro-lenses[J]. Nature Communications, 2017, 8: 14673.

    [17] Liu Z, Lin C H, Hyun B R, et al. Micro-light-emitting diodes with quantum dots in display technology[J]. Light: Sci. Appl., 2020, 9(1): 83.

    [18] Zhou X, Tian P, Sher C W, et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display[J]. Progress in Quantum Electron., 2020, 71: 100263.

    [19] Hu Y, Luo X, Chen Y, et al. 3D-integrated metasurfaces for full-colour holography[J]. Light: Sci. Appl., 2019, 8(1): 86.

    [20] Choi M K, Yang J, Hyeon T, et al. Flexible quantum dot light-emitting diodes for next-generation displays[J]. Npj Flexible Electron., 2018, 2(1): 10.

    [21] Li Y F, Chou S Y, Huang P, et al. Stretchable organometal-halide-perovskite quantum-dot lightemitting diodes[J]. Adv. Mater., 2019, 31: 1807516.

    [22] Chen Z, Wang G, Wang X. Physical mechanism and response characteristics of unsaturated optical stopping based amorphous arsenic sulfide thin-film waveguides[J]. IEEE Photonics J., 2019, 11(1): 6100910.

    [23] Chen Z, Wang G, Wang Xiong, et al. Moving toward optoelectronic logic circuits for visible light: A chalcogenide glass single-mode single-polarization optical waveguide switch[J]. Appl. Opt., 2017, 56(5): 1405-1412.

    [24] Sui G, Liu F, Guo H, et al. Flexible broadband white light multimode interference coupler[J]. Opt. Express, 2021, 29(19): 29730-29744.

    [25] Besse P A, Bachmann M. Optical bandwidth and fabrication tolerances of multimode interference couplers[J]. J. Lightwave Technol., 1994, 12(6): 1004-1009.

    [26] Soldano L B, Pennings E. Optical multi-mode interference devices based on self-imaging: principles and applications[J]. J. Lightwave Technol., 1995, 13(4): 615-627.

    CHEN Zhi. A Comparative Study of Multi-mode Interference RGB Waveguide Combiner for Augmented Reality (AR)[J]. Semiconductor Optoelectronics, 2023, 44(3): 356
    Download Citation