• Journal of Synthetic Crystals
  • Vol. 49, Issue 8, 1467 (2020)
LI Jiang1,2,*, TIAN Feng1,2, and LIU Ziyu1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    LI Jiang, TIAN Feng, LIU Ziyu. Research Progress and Prospect of Mid-infrared Laser Ceramics[J]. Journal of Synthetic Crystals, 2020, 49(8): 1467 Copy Citation Text show less
    References

    [6] Adams J J, Bibeau C, Page R H, et al. 4.0-4.5 μm lasing of Fe: ZnSe below 180 K, a new mid-infrared laser material[J]. Optics Letters, 1999,24: 1720-1722.

    [8] Messing G L, Stevenson A J. Toward pore-free ceramics[J]. Science, 2008, 322: 383-384.

    [9] Sanghera J, Kim W, Villalobos G, et al. Ceramic laser materials: past and present[J]. Optical Materials,2013, 35: 693-699.

    [10] Ikesue A, Aung Y L. Ceramic laser materials[J]. Nature Photonics, 2008, 2: 721-727.

    [11] Tittel F K, Richter D, Fried A. Mid-infrared laser applications in spectroscopy[J]. Topics in Applied Physics, 2003, 89: 445-510.

    [12] Krankel C. Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-μm spectral range[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21: 250-262.

    [13] Scholle K, Lamrini S, Koopmann P, et al. 2 μm laser sources and their possible applications: in frontiers in guided wave optics and optoelectronics[M]. Londo: IntechOpen, 2010.

    [15] Mehdizadeh E, Lunine J I, Atkinson G H. Intracavity laser spectroscopy with an ion-doped, solid-state Tm3+∶YAG laser[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2001, 68: 453-465.

    [17] Ryabochkina P A, Chabushkin A N, Kopylov Y L, et al. Two-micron lasing in diode-pumped Tm: Y2O3 ceramics[J]. Quantum Electronics, 2016, 46: 597-600.

    [18] Antipov O L, Novikov A A, Zakharov N G, et al. Optical properties and efficient laser oscillation at 2066 nm of novel Tm∶Lu2O3 ceramics[J]. Optical Materials Express, 2012, 2: 183-189.

    [19] Gheorghe C, Lupei A, Lupei V, et al. Intensity parameters of Tm3+ doped Sc2O3 transparent ceramic laser material[J]. Optical Materials, 2011, 33: 501-505.

    [20] Lupei V, Lupei A, Gheorghe C, et al. Spectroscopic characteristics of Tm3+ in Tm and Tm, Nd, Yb∶Sc2O3 ceramic[J]. Journal of Luminescence, 2008, 128: 901-904.

    [21] Antipov O L, Golovkin S Y, Gorshkov O N, et al. Structural, optical, and spectroscopic properties and efficient two-micron lasing of new Tm3+∶Lu2O3 ceramics[J]. Quantum Electronics, 2011, 41: 863-868.

    [22] Yao B Q, Zheng L L, Duan X M, et al. Diode-pumped room-temperature continuous wave Tm3+ doped Lu2SiO5 laser[J]. Laser Physics Letters, 2008, 5: 714-718.

    [23] Galceran M, Pujol M C, Gluchowski P, et al. A promising Lu2-xHoxO3 laser nanoceramic: synthesis and characterization[J]. Journal of the American Ceramic Society, 2010, 93: 3764-3772.

    [24] Gheorghe C, Lupei A, Lupei V, et al. Spectroscopic properties of Ho3+ doped Sc2O3 transparent ceramic for laser materials[J]. Journal of Applied Physics, 2009, 105: 1-6.

    [25] Kim W, Baker C, Bowman S, et al. Laser oscillation from Ho3+ doped Lu2O3 ceramics[J]. Optical Materials Express, 2013, 3: 913-919.

    [27] Sousa J M, Salcedo J R, Kuzmin V V. Simulation of laser dynamics and active Q-switching in Tm,Ho∶YAG and Tm∶YAG lasers[J]. Applied Physics B-Lasers and Optics, 1997, 64: 25-36.

    [28] Huang D-D, Yang Q-H, Wang Y-G, et al. Spectral and laser properties of Yb and Ho co-doped (YLa)2O3 transparent ceramic[J]. Chinese Physics B,2013, 22: 505-507.

    [29] Yao B Q, Duan X M, Zheng L L, et al. Continuous-wave and Q-switched operation of a resonantly pumped Ho∶YAlO3 laser[J]. Optics Express,2008, 16: 14668-14674.

    [30] Abdolvand A, Shen D Y, Cooper L J, et al. Highly efficient Ho∶YAG laser pumped by a Tm -doped silica fiber laser[C].Lasers and Electro-Optics,2003.

    [31] Shimizu M, Yamada M, Horiguchi M, et al. Erbium-doped fibre amplifiers with an extremely high gain coefficient of 11.0 dB/mW[J]. Electronics Letters,1990,26: 1641-1643.

    [32] Eilers H. Eye-safe Er,Yb∶Y2O3 ceramic laser materials[J]. Proceedings of SPIE-The International Society for Optical Engineering,2005, 5786: 242-250.

    [33] Fleischman Z D, Sanamyan T. Spectroscopic analysis of Er3+∶Y2O3 relevant to 27 μm mid-IR laser[J]. Optical Materials Express,2016, 6: 3109.

    [34] Gheorghe C, Georgescu S, Lupei V, et al. Absorption intensities and emission cross section of Er3+ in Sc2O3 transparent ceramics[J]. Journal of Applied Physics, 2008, 103: 1-5.

    [35] Hou W, Zhao H, Li N, et al. Spectroscopic properties of Er∶Lu2O3 crystal in mid-infrared emission[J]. Optical Materials, 2019, 98: 109508.

    [36] Merkle L D, Ter-Gabrielyan N, Kacik N J, et al. Er∶Lu2O3 laser-related spectroscopy[J]. Optical Materials Express, 2013, 3: 1992-2002.

    [37] Uehara H, Tokita S, Kawanaka J, et al. Optimization of laser emission at 2.8 μm by Er∶Lu2O3 ceramics[J]. Optics Express, 2018, 26: 3497-3507.

    [38] Mirov S B, Fedorov V V, Martyshkin D, et al. Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 1601719.

    [39] Carnall E, Hatch S E, Parsons W F. The role of grain boundaries and surfaces in ceramic: optical studies on hot-pressed polycrystalline CaF2 with clean grain boundaries[M].Springer Netherlands,1966.

    [40] Ikesue A, Kinoshita T, Kamata K, et al. Fabrication and optical-properties of high-performance polycrystalline Nd∶YAG ceramics for solid-state lasers[J]. Journal of the American Ceramic Society, 1995, 78: 1033-1040.

    [41] Li J, Pan Y B, Zeng Y P, et al. The history, development, and future prospects for laser ceramics: A review[J]. International Journal of Refractory Metals & Hard Materials, 2013, 39: 44-52.

    [43] Li J, Zhou J, Pan Y B, et al. Solid-state reactive sintering and optical characteristics of transparent Er∶YAG laser ceramics[J]. J. Am. Ceram. Soc., 2012, 95: 1029-1032.

    [44] Liu J, Liu Q, Li J, et al. The influence of doping concentration on microstructure evolution and sintering kinetics of Er∶YAG transparent ceramics[J]. Opt. Mater., 2014, 37: 706-713.

    [46] Zhang W X, Pan Y B, Zhou J, et al. Diode-pumped Tm∶YAG ceramic laser[J]. Journal of the American Ceramic Society, 2009, 92: 2434-2437.

    [47] Zhang W X, Pan Y B, Zhou J, et al. Preparation and characterization of transparent Tm∶YAG ceramics[J]. Ceram. Int., 2011, 37: 1133-1137.

    [49] Zhang W X, Liu W B, Li J, et al. Fabrication, properties and laser performance of Ho∶YAG transparent ceramic[J]. J. Alloy Compd., 2010, 506: 745-748.

    [50] Li C Y, Xie T F, Zhang Y, et al. Polycrystalline Ho∶LuAG laser ceramics: fabrication, microstructure and optical characterization[J]. J. Am. Ceram. Soc., 2017, 100: 2081-2087.

    [51] Wang Y C, Lan R J, Mateos X, et al. Thulium doped LuAG ceramics for passively mode locked lasers[J]. Opt. Express, 2017, 25: 7084-7091.

    [52] Yue F X, Loiko P, Chen M T, et al. Spectroscopy and diode-pumped laser operation of transparent Tm∶Lu3Al5O12 ceramics produced by solid-state sintering[J]. Opt. Express, 2020, doi: 10.1364/OE.400802.

    [53] Yang H, Zhang L, Luo D W, et al. Optical properties of Ho∶YAG and Ho∶LuAG polycrystalline transparent ceramics[J]. Optical Materials Express, 2015, 5: 142-148.

    [54] Li T, Beil K, Kraenkel C, et al. Efficient high-power continuous wave Er∶Lu2O3 laser at 2.85 μm[J]. Optics Letters, 2012, 37: 2568-2570.

    [55] Saurabh S, Ramesh S, Miller J K. Spectroscopic properties of Er-sesquoxides[C].Solid State Lasers Xxi: Technology & Devices. International Society for Optics and Photonics, 2012.

    [56] Futami Y, Yanagida T, Fujimoto Y, et al. Optical and scintillation properties of Sc2O3, Y2O3 and Lu2O3 transparent ceramics synthesized by SPS method[J]. Radiation Measurements, 2013, 55: 136-140.

    [57] Yanagitani T, Yagi H, Ichikawa M.10-101333[P].Japanese patent,1997.

    [58] Yanagitani T, Yagi H, Hiro Y.10-101411[P].Japanese patent,1998.

    [59] Lu J R, Ueda K, Yagi H, et al. Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials[J]. Journal of Alloys and Compounds, 2002, 341: 220-225.

    [60] Lu J, Bisson J F, Takaichi K, et al. Yb3+∶Sc2O3 ceramic laser[J]. Applied Physics Letters, 2003, 83: 1101-1103.

    [61] Yanagida T, Fujimoto Y, Yagi H, et al. Optical and scintillation properties of transparent ceramic Yb∶Lu2O3 with different Yb concentrations[J]. Optical Materials, 2014, 36: 1044-1048.

    [62] Yue F, Jambunathan V, Paul David S, et al. Spectroscopy and diode-pumped continuous-wave laser operation of Tm∶Y2O3 transparent ceramic at cryogenic temperatures[J]. Applied Physics B, 2020, 126: 1-8.

    [63] Baylam I, Canbaz F, Sennaroglu A. Dual-wavelength temporal dynamics of a gain-wwitched 2 μm Tm3+∶Lu2O3 ceramic laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24: 1601208.

    [64] Uehara H, Yasuhara R, Tokita S, et al. Efficient continuous wave and quasi-continuous wave operation of a 2.8 μm Er∶Lu2O3 ceramic laser[J]. Optics Express, 2017, 25: 18677-18684.

    [65] Morris J, Stevenson N K, Bookey H T, et al. 1.9 μm waveguide laser fabricated by ultrafast laser inscription in Tm∶Lu2O3 ceramic[J]. Optics Express, 2017, 25: 14910-14917.

    [66] Ivakin E V, Kisialiou I G, Antipov O L. Laser ceramics Tm∶Lu2O3 center dot thermal, thermo-optical, and spectroscopic properties[J]. Optical Materials, 2013, 35: 499-503.

    [67] Merkle L D, Newburgh G A, Ter-Gabrielyan N, et al. Temperature-dependent lasing and spectroscopy of Yb∶Y2O3 and Yb∶Sc2O3[J]. Optics Communications, 2008, 281: 5855-5861.

    [68] Xia M H, Hong L Q, Feng Q Y, et al. 5.5 W CW Yb3+∶Y2O3 ceramic laser pumped with 970 nm laser diode[J]. Optics Communications, 2005, 246: 465-469.

    [69] Lu J, Takaichi K, Uematsu T, et al. Promising ceramic laser material: Highly transparent Nd3+∶Lu2O3 ceramic[J]. Applied Physics Letters, 2002, 81: 4324-4326.

    [70] Lu J, Lu J, Murai T, et al. Highly efficient CW Nd∶Y2O3 ceramic laser[C].Advanced Solid-State Lasers,2002.

    [71] Uehara H, Tokita S, Kawanaka J, et al. A passively Q-switched compact Er∶Lu2O3 ceramics laser at 2.8 μm with a graphene saturable absorber[J]. Applied Physics Express, 2019, 12: 1-4.

    [72] Li W, Zhou S, Lin H, et al. Controlling of grain size with different additives in Tm3+∶Y2O3 transparent ceramics[J]. Journal of the American Ceramic Society, 2010, 93: 3819-3822.

    [73] Yi Q, Zhou S, Teng H, et al. Structural and optical properties of Tm∶Y2O3 transparent ceramic with La2O3, ZrO2 as composite sintering aid[J]. Journal of the European Ceramic Society, 2012, 32: 381-388.

    [74] Li W, Zhou S, Liu N, et al. Effect of additives on optical characteristic of thulium doped yttria transparent ceramics[J]. Optical Materials, 2010, 32: 971-974.

    [75] Yin D, Wang J, Wang Y, et al. Fabrication of Er∶Y2O3 transparent ceramics for 2.7 μm mid-infrared solid-state lasers[J]. Journal of the European Ceramic Society, 2020, 40: 444-448.

    [76] Hatch S E, Parsons W F, Weagley R J. Hot-pressed polycrystalline CaF2∶Dy2+ laser[J]. Applied Physics Letters, 1964, 5: 153-154.

    [77] Ulc J, Němec M, vejkar R, et al. Diode-pumped Er∶CaF2 ceramic 2.7 μm tunable laser[J]. Optics Letters, 2013, 38: 3406-3409.

    [78] Basiev T T, Doroshenko M E, Fedorov P P, et al. Efficient laser based on CaF2-SrF2-YbF3 nanoceramics[J]. Optics Letters, 2008, 33: 521-523.

    [79] Lyapin A A, Fedorov P P, Garibin E A, et al. Spectroscopic, luminescent and laser properties of nanostructured CaF2∶Tm materials[J]. Optical Materials, 2013, 35: 1859-1864.

    [80] Liu Z D, Mei B C, Song J H, et al. Fabrication and optical characterizations of Yb, Er codoped CaF2 transparent ceramic[J]. Journal of the European Ceramic Society, 2014, 34: 4389-4394.

    [81] Liu Z D, Mei B C, Song J H, et al. Influence of Yb concentration on the optical properties of CaF2 transparent ceramics codoped with Er and Yb[J]. Journal of the American Ceramic Society, 2015, 98: 3905-3910.

    [82] Liu Z D, Mei B C, Song J H, et al. Optical characterizations of hot-pressed erbium-doped calcium fluoride transparent ceramic[J]. Journal of the American Ceramic Society, 2014, 97: 2506-2510.

    [83] Zhou W B, Cai F F, Zhi G L, et al. Fabrication of highly-transparent Er∶CaF2 ceramics by hot-pressing technique[J]. Materials Science-Poland, 2014, 32: 358-363.

    [84] Liu Z D, Mei B C, Song J H, et al. Microstructure and optical properties of hot-pressed Er∶CaF2 transparent ceramics[J]. Journal of Alloys and Compounds, 2015, 646: 760-765.

    [85] Li W W, Liu Z D, Zhou Z W, et al. Characterizations of a hot-pressed Er and Y codoped CaF2 transparent ceramic[J]. Journal of the European Ceramic Society, 2016, 36: 3481-3486.

    [86] Liu J S, Song J H, Mei B C, et al. Fabrication and mid-infrared property of Er∶CaF2 transparent ceramics[J]. Materials Research Bulletin, 2019, 111: 158-164.

    [87] Liu Z D, Jia M Y, Yi G Q, et al. Fabrication and microstructure characterizations of transparent Er∶CaF2 composite ceramic[J]. Journal of the American Ceramic Society, 2019, 102: 285-293.

    [88] Liu J, Liu P, Wang J, et al. Fabrication and sintering behavior of Er∶SrF2 transparent ceramics using chemically derived powder[J]. Materials, 2018, 11: 1-9.

    [89] Liu F Y. Tm∶YAG laser and prospect in application[J]. Laser Infrared Physics & Technology, 1997, 27: 70-73,80.

    [90] Zhang S Y, Wang X, Kong W J, et al. Efficient Q-switched Tm∶YAG ceramic slab laser pumped by a 792 nm fiber laser[J]. Optics Communications, 2013, 286: 288-290.

    [91] Yao B Q, Yu X, Ju Y L, et al. Room temperature diode-pumped tunable single-frequency Tm∶YAG ceramic laser[J]. Chinese Physics Letters, 2013, 30: 24210.

    [92] Gluth A, Wang Y C, Petrov V, et al. GaSb-based SESAM mode-locked Tm∶YAG ceramic laser at 2 μm[J]. Optics Express, 2015, 23: 1361-1369.

    [93] Filer E D, Barnes N P, Morrison C A E D D G, et al. In theoretical temperature-dependent branching ratios and laser thresholds of the 3F4 to 3H6 levels of Tm3+in ten garnets[C].Advanced Solid State Lasers,1991.

    [94] Barnes N P, Jani M G, Hutcheson R L. Diode-pumped, room-temperature Tm∶LuAG laser[J]. Applied Optics,1995,34: 4290-4294.

    [95] Yao B Q, Li X L, Dai T Y, et al. Diode-pumped tape casting planar waveguide YAG/Tm∶YAG/YAG ceramic laser at 2013.76 nm[J]. Optics Letters, 2016, 41: 254-256.

    [96] Wang Y C, Lan R J, Mateos X, et al. Thulium doped LuAG ceramics for passively mode locked lasers[J]. Optics Express, 2017, 25: 7084-7091.

    [97] Wang Y, Lan R, Mateos X, et al. In Passively Mode-Locked Tm: LuAG Ceramic Laser[C]. CLEO: Science and Innovations,2017.

    [98] Feng Y G, Toci G D, Patrizi B, et al. Fabrication, microstructure, and optical properties of Tm∶Y3ScAl4O12 laser ceramics[J]. Journal of the American Ceramic Society, 2020, 103: 1819-1830.

    [99] Szela J W, Sloyan K A, Parsonage T L, et al. Laser operation of a Tm∶Y2O3 planar waveguide[J]. Optics Express, 2013, 21: 12460-12468.

    [100] Wang H, Huang H, Liu P, et al. Diode-pumped continuous-wave and Q-switched Tm∶Y2O3 ceramic laser around 2050 nm[J]. Optical Materials Express, 2017, 7: 296-303.

    [101] Wang H, Huang H, Wang S, et al. Nanosecond Tm∶Y2O3 ceramic laser passively Q-switched by a Ho∶LuAG ceramic[J]. Optical Engineering, 2018, 57: 1.

    [102] Huang H, Wang H, Shen D. VBG-locked continuous-wave and passively Q-switched Tm: Y2O3 ceramic laser at 2.1 μm[J]. Optical Materials Express, 2017, 7: 3147-3154.

    [103] Wang S, Liu X, Huang H, et al. Wavelength-locked Tm∶Y2O3 ceramic laser with a volume Bragg grating[J]. Optical Engineering, 2019, 58: 026114.

    [104] Zhou W, Huang H, Chen X, et al. 2 μm vector mode-locked pulses from Tm∶Y2O3 ceramics laser[J]. Laser Physics, 2019, 29: 045301.

    [105] Antipov O L, Novikov A A, Eranov I D, et al. High-efficiency oscillations at 1940 nm and 2070 nm in diode-pumped Tm∶Lu2O3 ceramics lasers and their OPO frequency converision[C]. International Conference Laser Optics,2014.

    [106] Antipov O, Novikov A, Larin S, et al. Highly efficient 2 μm CW and Q-switched Tm3+∶Lu2O3 ceramics lasers in-band pumped by a Raman-shifted erbium fiber laser at 1670 nm[J]. Optics Letters, 2016, 41: 2298-2301.

    [107] Lagatsky A A, Antipov O L, Sibbett W. Broadly tunable femtosecond Tm∶Lu2O3 ceramic laser operating around 2070 nm[J]. Optics Express, 2012, 20: 19349-19354.

    [108] Lagatsky A A, Sun Z, Kulmala T S, et al. 2 μm solid-state laser mode-locked by single-layer graphene[J]. Applied Physics Letters, 2013, 102: 031106.

    [109] Vetrovec J, Filgas D M, Smith C A, et al. 2-micron lasing in Tm∶Lu2O3 ceramic: Initial operation[C].Solid State Lasers Xxvii: Technology and Devices, 2018.

    [110] Hrknen A,Li J, Guina M, et al. In-band-pumped mode-locked Ho∶YAG ceramic laser at 2.1 μm[C].Lasers & Electro-optics, 2016.

    [111] Wang Y C, Lan R J, Mateos X, et al. Broadly tunable mode-locked Ho∶YAG ceramic laser around 2.1 μm[J]. Optics Express, 2016, 24: 18003-18012.

    [112] Duan X, Yuan J, Cui Z, et al. Resonantly pumped actively mode-locked Ho∶YAG ceramic laser at 2122.1 nm[J]. Applied Optics, 2016, 55: 1953-1956.

    [113] Yuan J H, Duan X M, Yao B Q, et al. Dual-end-pumped high-power Cr2+∶ZnS passively Q-switched Ho∶YAG ceramic laser[J]. Applied Physics B-Laser And Optics, 2015, 119: 381-385.

    [114] Wu J, Ju L, Yao B Q, et al. Tunable single-longitudinal-mode operation of a sandwich-type YAG/Ho∶YAG/YAG ceramic laser[J]. Infrared Physics & Technology, 2016, 78: 40-44.

    [115] Zhang Y X, Gao C Q, Wang Q, et al. High-energy, stable single-frequency Ho∶YAG ceramic amplifier system[J]. Applied Optics, 2017, 56: 9531-9535.

    [116] Zhang Y, Yao B Q, Cui Z, et al. The performance of a novel Ho∶LuAG ceramic laser Q-switched by a polycrystalline Cr2+∶ZnS saturable absorber[J]. Applied Physics B, 2017, 123: 1-5.

    [117] Cui Z, Duan X M, Yao B Q, et al. Cr2+∶ZnS saturable absorber passively Q-switched Ho∶LuAG laser[J]. Laser Phys, 2015, 25: 59-62.

    [118] Chen H, Zhao T, Yang H, et al. Energy level systems and transitions of Ho∶LuAG laser resonantly pumped by a narrow line-width Tm fiber laser[J]. Optics Express, 2016, 24: 27536-27545.

    [119] Newburgh G A, Akil Word-Daniels, Arocksiamy Michael, et al. Resonantly diode-pumped Ho3+∶Y2O3 ceramic 2.1 μm laser[J]. Optics Express, 2011, 19: 3604-3611.

    [120] Wang J, Zhao Y, Yin D, et al. Holmium doped yttria transparent ceramics for 2 μm solid state lasers[J]. Journal of the European Ceramic Society, 2018, 38: 1986-1989.

    [121] Zhao Y, Wang J, Yao W, et al. High-power Ho-doped sesquioxide ceramic laser in-band pumped by a Tm-doped all-fiber MOPA[J]. IEEE Photonics Journal, 2018, 10: 1502107.

    [122] Wang F, Tang J, Li E, et al. Ho3+∶Y2O3 ceramic laser generated over 113 W of output power at 2 117 nm[J]. Optics Letters, 2019, 44: 5933-5936.

    [123] Kaufmann R, Hibst R. Pulsed Er∶YAG- and 308 nm UV-excimer laser: an in vitro and in vivo study of skin-ablative effects[J]. Lasers in Surgery Medicine, 1989, 9: 132-140.

    [124] Hossain M, Nakamura Y, Kimura Y, et al. Caries-preventive effect of Er∶YAG laser irradiation with or without water mist[J]. Photomedicine Laser Surgery, 2000, 18: 61-65.

    [125] Fried D, Featherstone J D B, Visuri S R, et al. Caries inhibition potential of Er∶YAG and Er∶YSGG laser radiation[J]. Proceedings of the International Society for Optical Engineering, 1996, 2672: 73-78.

    [126] Sanamyan T, Simmons J, Dubinskii M. Er3+-doped Y2O3 ceramic laser at ~2.7 μm with direct diode pumping of the upper laser level[J]. Laser Physics Letters, 2010, 7: 206-209.

    [127] Sanamyan T, Simmons J, Dubinskii M. Efficient cryo-cooled 2.7 μm Er3+∶Y2O3 ceramic laser with direct diode pumping of the upper laser level[J]. Laser Physics Letters, 2010, 7: 569-572.

    [128] Sanamyan T, Kanskar M, Xiao Y, et al. High power diode-pumped 2.7 μm Er3+∶Y2O3 laser with nearly quantum defect-limited efficiency[J]. Optics Express, 2011, 5: 1082-1087.

    [129] Sanamyan T. Diode pumped cascade Er∶Y2O3 laser[J]. Laser Physics Letters, 2015, 12: 125804.

    [130] Wang L, Huang H, Shen D, et al. Room temperature continuous-wave laser performance of LD pumped Er∶Lu2O3 and Er∶Y2O3 ceramic at 2.7 μm[J]. Optics Express, 2014, 22: 19495-19503.

    [131] Wang L, Huang H, Shen D, et al. Diode-pumped high power 2.7 μm Er∶Y2O3 ceramic laser at room temperature[J]. Optical Materials, 2017, 71: 70-73.

    [132] Wang L, Huang H, Ren X, et al. Nanosecond pulse generation at 2.7 μm from a passively Q-switched Er∶Y2O3 ceramic laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24: 1-1.

    [133] Xue H, Wang L, Zhou W, et al. Stable Q-switched mode-locking of 2.7 μm Er∶Y2O3 ceramic laser using a semiconductor saturable absorber[J]. Applied Sciences-Basel, 2018, 8: 1155-1-1155-7.

    [134] Wang L, Huang H, Shen D, et al. High power and short pulse width operation of passively Q-switched Er∶Lu2O3 ceramic laser at 2.7 μm[J]. Applied Sciences-Basel, 2018, 8: 1-7.

    [135] Ren X, Shen D, Zhang J, et al. Passive Q-switching of similar to 2.7 μm Er∶Lu2O3 ceramic laser with a semiconductor saturable absorber mirror[J]. Japanese Journal of Applied Physics, 2018, 57: 022701.

    [136] Wang L, Huang H, Shen D, et al. Highly stable self-pulsed operation of an Er∶Lu2O3 ceramic laser at 2.7 μm[J]. Laser Physics Letters, 2017, 14: 045803.

    [139] Mirov S B, Fedorov V V, Graham K, et al. Erbium fiber laser-pumped continuous-wave microchip Cr2+∶ZnS and Cr2+∶ZnSe lasers[J].Optics Letter, 2002, 27: 909-911.

    [140] Sorokina I T, Sorokin E, Carrig T J, et al. A SESAM passively mode-locked Cr∶ZnS laser[C].Advanced Solid-state Photonicsadvanced Solid-state Photonics, 2006.

    [141] Demirbas U, Sennaroglu A, Somer M. Synthesis and characterization of diffusion-doped Cr2+∶ZnSe and Fe2+∶ZnSe[J]. Optical Materials, 2006, 28: 231-240.

    [143] Ndap J O, Chattopadhyay K, Adetunji O O, et al. Thermal diffusion of Cr2+ in bulk ZnSe[J]. Journal of Crystal Growth, 2002, 240: 176-184.

    [144] Konak T, Tekavec M, Fedorov V V, et al. Electrical, spectroscopic, and laser characterization of γ-irradiated transition metal doped II-VI semiconductors[J]. Optical Materials Express, 2013, 3(6): 777-786.

    [145] Martinez A, Williams L, Fedorov V, et al. Gamma radiation-enhanced thermal diffusion of iron ions into II-VI semiconductor crystals[J]. Optical Materials Express, 2015, 5(3): 20-32.

    [146] Gafarov O, Martinez A, Fedorov V, et al. Enhancement of Cr and Fe diffusion in ZnSe/S laser crystals via annealing in vapors of Zn and hot isostatic pressing[J]. Optical Materials Express, 2017, 7(1): 25-31.

    [147] Stites R W, McDaniel S A, Barnes J O, et al. Hot isostatic pressing of transition metal ions into chalcogenide laser host crystals[J]. Optical Materials Express, 2016, 6(10): 3339-3353.

    [148] Vasilyev S, Moskalev I, Mirov M, et al. Mid-IR Kerr-lens mode-locked polycrystalline Cr2+∶ZnS lasers[C]. SPIE Defense+Security. 2016: 98350 W.

    [149] Vasilyev S, Moskalev I, Mirov M, et al. Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+∶ZnS laser[J]. Optics Letters, 2015, 40(21): 5054.

    [150] Vasilyev S, Mirov M, Gapontsev V. Mid-IR Kerr-lens mode-locked polycrystalline Cr2+∶ZnS laser with 29 fs pulse duration[C]. CLEO: 2015 Postdeadline Paper Digest. 2015: JTh5C.3.

    [151] Evans J W, Berry P A, Schepler K L. 840 mW continuous-wave Fe∶ZnSe laser operating at 4140 nm[J]. Optics Letters, 2012, 37(23): 5021-5023.

    [152] Chen M, Li W, Kou H, et al. Hot-pressed Cr∶ZnSe ceramic as mid-infrared laser material[C].Pacific Rim Laser Damage: Optical Materials for High Power Lasers,2013.

    [153] Mirov S B, Fedorov V V, Moskalev I S, et al. Recent progress in transition-metal-doped II-VI mid-IR lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13: 810-822.

    [154] Gallian A, Fedorov V V, Mirov S B, et al. Hot-pressed ceramic Cr2+∶ZnSe gain-switched laser[C].Lasers & Electro-Optics,2005.

    [155] Gallian A, Fedorov V V, Mirov S B, et al. Hot-pressed ceramic Cr2+∶ZnSe gain-switched laser[J]. Optics Express, 2006, 14: 11694-11701.

    [156] Li Y, Liu Y, Fedorov V V, et al. Hot-pressed chromium doped zinc sulfide infrared transparent ceramics[J]. Scripta Materialia,2016, 125: 15-18.

    [157] Chen M, Hu C, Kou H M, et al. Cr3+ in diffusion doped Cr2+∶ZnS[J]. Ceram. Int., 2014, 40: 7573-7577.

    [158] Li C, Chen H, Ivanov M, et al. Large-scale hydrothermal synthesis and optical properties of Cr2+∶ZnS nanocrystals[J]. Ceramics International, 2018, 44: 13169-13175.

    [159] Li C, Pan Y, Kou H, et al. Densification behavior, phase transition, and preferred orientation of hot-pressed ZnS ceramics from precipitated nanopowders[J]. Journal of the American Ceramic Society, 2016, 99: 3060-3066.

    [160] Li C, Xie T, Kou H, et al. Hot-pressing and post-HIP treatment of Fe2+∶ZnS transparent ceramics from co-precipitated powders[J]. Journal of the European Ceramic Society, 2017, 37: 2253-2257.

    CLP Journals

    [1] LUO Yongzhi, YU Shengquan, YIN Ming, KANG Bin. Research Progress on Transition Metal Ions Doped Ⅱ-Ⅵ Group Mid-Infrared Laser Ceramics[J]. Journal of Synthetic Crystals, 2021, 50(5): 947

    LI Jiang, TIAN Feng, LIU Ziyu. Research Progress and Prospect of Mid-infrared Laser Ceramics[J]. Journal of Synthetic Crystals, 2020, 49(8): 1467
    Download Citation