• Advanced Photonics
  • Vol. 6, Issue 2, 026002 (2024)
Chao Shen1、2、†, Shuyan Fang1, Jibin Zhang3、*, Xiangfei Liang1, Chenhui Su1, Jian Qing1, Wanzhu Cai1, Yunhan Luo2、4、*, Renqiang Yang5, and Lintao Hou1、*
Author Affiliations
  • 1Jinan University, College of Physics and Optical Engineering, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangzhou, China
  • 2Jinan University, College of Physics and Optical Engineering, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Guangzhou, China
  • 3Zhengzhou University, School of Physics and Microelectronics, Key Laboratory of Materials Physics of Ministry of Education, Zhengzhou, China
  • 4Jinan University, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou, China
  • 5Jianghan University, School of Optoelectronic Materials and Technology, Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Wuhan, China
  • show less
    DOI: 10.1117/1.AP.6.2.026002 Cite this Article Set citation alerts
    Chao Shen, Shuyan Fang, Jibin Zhang, Xiangfei Liang, Chenhui Su, Jian Qing, Wanzhu Cai, Yunhan Luo, Renqiang Yang, Lintao Hou. High performance and stable pure-blue quasi-2D perovskite light-emitting diodes by multifunctional zwitterionic passivation engineering[J]. Advanced Photonics, 2024, 6(2): 026002 Copy Citation Text show less
    References

    [1] Y. K. Wang. Self-assembled monolayer-based blue perovskite LEDs. Sci. Adv., 9, eadh2140(2023).

    [2] Y. Q. Sun et al. Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature, 615, 830-835(2023).

    [3] H. Wang et al. In-situ growth of low-dimensional perovskite-based insular nanocrystals for highly efficient light emitting diodes. Light Sci. Appl., 12, 62(2023).

    [4] G. Jang et al. Rapid crystallization-driven high-efficiency phase-pure deep-blue Ruddlesden-Popper perovskite light-emitting diodes. Adv. Photonics, 5, 016001(2023).

    [5] B. D. Zhao et al. Light management for perovskite light-emitting diodes. Nat. Nanotechnol., 18, 981-992(2023).

    [6] Z. K. Tan et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol., 9, 687-692(2014).

    [7] J. B. Zhang et al. A multifunctional ‘halide-equivalent’ anion enabling efficient CsPb(Br/I)3 nanocrystals pure-red light-emitting diodes with external quantum efficiency exceeding 23%. Adv. Mater., 35, 2209002(2023). https://doi.org/10.1002/adma.202209002

    [8] J. B. Zhang et al. Ligand-induced cation-Π interactions enable high-efficiency, bright and spectrally stable Rec. 2020 pure-red perovskite light-emitting diodes. Adv. Mater., 35, 2303938(2023).

    [9] W. D. Xu et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics, 13, 418-424(2019).

    [10] W. H. Bai et al. Perovskite light-emitting diodes with an external quantum efficiency exceeding 30%. Adv. Mater., 35, 2302283(2023).

    [11] Z. M. Chu et al. Blue light-emitting diodes based on quasi-two-dimensional perovskite with efficient charge injection and optimized phase distribution via an alkali metal salt. Nat. Electron., 6, 360-369(2023).

    [12] Y. J. Liu et al. A multifunctional additive strategy enables efficient pure‐blue perovskite light‐emitting diodes. Adv. Mater., 35, 2302161(2023).

    [13] L. Zhang et al. Manipulating local lattice distortion for spectrally stable and efficient mixed-halide blue perovskite LEDs. Angew. Chem. Int. Ed., 62, e202302184(2023).

    [14] L. Shu et al. Highly efficient blue light‐emitting diodes based on perovskite film with vertically graded bandgap and organic grain boundary passivation shells. Adv. Funct. Mater., 33, 2306570(2023).

    [15] S. Yuan et al. Efficient and spectrally stable blue perovskite light-emitting diodes employing a cationic π-conjugated polymer. Adv. Mater., 33, 2103640(2021). https://doi.org/10.1002/adma.202103640

    [16] M. Karlsson et al. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat. Commun., 12, 361(2021).

    [17] X. F. Liang et al. Promoting energy transfer between quasi‐2D perovskite layers toward highly efficient red light‐emitting diodes. Small, 18, 2204638(2022).

    [18] J. B. Zhang et al. Enhancing stability of red perovskite nanocrystals through copper substitution for efficient light-emitting diodes. Nano Energy, 62, 434-441(2019).

    [19] Z. Y. Guo et al. Homogeneous phase distribution in Q-2D perovskites via co-assembly of spacer cations for efficient light-emitting diodes. Adv. Mater., 35, 2302711(2023).

    [20] S. C. Liu et al. Zwitterions narrow distribution of perovskite quantum wells for blue light-emitting diodes with efficiency exceeding 15%. Adv. Mater., 35, 2208078(2023).

    [21] H. W. Zhu et al. Enriched‐bromine surface state for stable sky‐blue spectrum perovskite QLEDs with an EQE of 14.6%. Adv. Mater., 34, 2205092(2022).

    [22] X. Y. Shen et al. Bright and efficient pure red perovskite nanocrystals light‐emitting devices via in situ modification. Adv. Funct. Mater., 32, 2110048(2022).

    [23] K. Datta et al. Light-induced halide segregation in 2D and quasi-2D mixed-halide perovskites. ACS Energy Lett., 8, 1662-1670(2023).

    [24] B. Cai et al. A new descriptor for complicated effects of electronic density of states on ion migration. Adv. Funct. Mater., 33, 2300445(2023).

    [25] B. B. Guo et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photonics, 16, 637-643(2022).

    [26] D. X. Ma et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature, 599, 594-598(2021).

    [27] A. Walsh. Principles of chemical bonding and band gap engineering in hybrid organic-inorganic halide perovskites. J. Phys. Chem. C, 119, 5755-5760(2015).

    [28] K. L. Svane et al. How strong is the hydrogen bond in hybrid perovskites?. J. Phys. Chem. Lett., 8, 6154-6159(2017).

    [29] J. Zhang et al. Sulfonic zwitterion for passivating deep and shallow level defects in perovskite light‐emitting diodes. Adv. Funct. Mater., 32, 2111578(2022).

    [30] J. N. Yang et al. Pseudohalogen resurfaced CsPbBr3 nanocrystals for bright, efficient, and stable green-light-emitting diodes. Nano Lett., 23, 3385-3393(2023). https://doi.org/10.1021/acs.nanolett.3c00385

    [31] P. Lu et al. Enrichment of anchoring sites by introducing supramolecular halogen bonds for the efficient perovskite nanocrystal LEDs. Light Sci. Appl., 12, 215(2023).

    [32] X. J. Gu et al. Rational surface-defect control via designed passivation for high-efficiency inorganic perovskite solar cells. Angew. Chem. Int. Ed., 60, 23164-23170(2021).

    [33] H. F. Zhao et al. High-brightness perovskite light-emitting diodes based on FAPbBr3 nanocrystals with rationally designed aromatic ligands. ACS Energy Lett., 6, 2395-2403(2021). https://doi.org/10.1021/acsenergylett.1c00812

    [34] L. M. Kong et al. Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nat. Commun., 12, 1246(2021).

    [35] Y. H. Zhou et al. Perovskite anion exchange: a microdynamics model and a polar adsorption strategy for precise control of luminescence color. Adv. Funct. Mater., 31, 2106871(2021).

    [36] L. Y. Wu et al. Stabilization of inorganic perovskite solar cells with a 2D Dion-Jacobson passivating layer. Adv. Mater., 35, 2304150(2023).

    [37] C. Li et al. Understanding the improvement in the stability of a self-assembled multiple-quantum well perovskite light-emitting diode. J. Phys. Chem. Lett., 10, 6857-6864(2019).

    [38] A. Q. Liu et al. Multiple phase regulation enables efficient and bright quasi-2D perovskite light-emitting diodes. Nano Lett., 23, 11082-11090(2023).

    [39] Y. S. Shin et al. Manipulated interface for enhanced energy cascade in quasi-2D blue perovskite light-emitting diodes. ACS Energy Lett., 7, 3345-3352(2022).

    [40] Z. Liu et al. Deep-red perovskite light-emitting diodes with external quantum efficiency exceeding 21% enabled by ligand-modulated dimensionality control. Adv. Opt. Mater., 10, 2201123(2022).

    [41] L. M. Kong et al. A spacer cation assisted nucleation and growth strategy enables efficient and high‐luminance quasi‐2D perovskite LEDs. Adv. Funct. Mater., 33, 2209186(2022).

    [42] R. D. Zhu et al. Realizing Rec. 2020 color gamut with quantum dot displays. Opt. Express, 23, 23680-23693(2015).

    [43] C. X. Bao et al. Bidirectional optical signal transmission between two identical devices using perovskite diodes. Nat. Electron., 3, 156-164(2020).

    [44] Q. S. Shan et al. Perovskite light-emitting/detecting bifunctional fibres for wearable LiFi communication. Light: Sci. Appl., 9, 163(2020).

    [45] M. L. Xia et al. Ultrastable perovskite nanocrystals in all-inorganic transparent matrix for high-speed underwater wireless optical communication. Adv. Opt. Mater., 9, 2002239(2021).

    [46] J. Sticklus et al. Optical underwater communication: the potential of using converted green LEDs in coastal waters. IEEE J. Oceanic Eng., 44, 535-547(2018).

    [47] H. M. Oubei et al. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication. Opt. Express, 23, 23302-23309(2015).

    [48] W. Lei et al. Asymmetric additive-assisted organic solar cells with much better energy harvesting and wireless communication performance. Adv. Energy Mater., 13, 2301755(2023).

    [49] H. J. Monkhorst, J. D. Pack. Special points for Brillouin-zone integrations. Phys. Rev. B, 13, 5188-5192(1976).

    [50] J. P. Perdew et al. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865-3868(1996).

    [51] G. Kresse, D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758-1775(1999).

    [52] N. Yantara et al. Designing the perovskite structural landscape for efficient blue emission. ACS Energy Lett., 5, 1593-1600(2020).

    [53] Y. Shen et al. Interfacial potassium-guided grain growth for efficient deep-blue perovskite light-emitting diodes. Adv. Funct. Mater., 31, 2006736(2021).

    [54] Y. C. Kim et al. High-performance perovskite-based blue light-emitting diodes with operational stability by using organic ammonium cations as passivating agents. Adv. Funct. Mater., 31, 2005553(2021).

    [55] A. Mishra et al. Leveraging a stable perovskite composite to satisfy blue electroluminescence standards. ACS Mater. Lett., 3, 1357-1362(2021).

    [56] S. H. Zhao et al. Postdeposition halide exchange for achieving deep-blue perovskite light-emitting diodes: the role of the organic cations in the chloride source. Small Methods, 8, 2300572(2023).

    Chao Shen, Shuyan Fang, Jibin Zhang, Xiangfei Liang, Chenhui Su, Jian Qing, Wanzhu Cai, Yunhan Luo, Renqiang Yang, Lintao Hou. High performance and stable pure-blue quasi-2D perovskite light-emitting diodes by multifunctional zwitterionic passivation engineering[J]. Advanced Photonics, 2024, 6(2): 026002
    Download Citation